Unitronics UMI-B7 VFD User Guide

No.	Change Description	Version	Date
1	Initial version	V1.4	January 2024
2	Design	V1.5	February 2024
3	Language correction	V1.7	April 2024

Content

Content	iii
1 Safety precautions	1
1.1 What this chapter contains	1
1.2 Safety definition	1
1.3 Warning symbols	1
1.4 Safety guidelines	2
1.4.1 Delivery and installation	2
1.4.2 Commissioning and running	3
1.4.3 Maintenance and component replacement	4
1.4.4 What to do after scrapping	4
2 Quick start	5
2.1 What this chapter contains	5
2.2 Unpack inspection	5
2.3 Application confirmation	5
2.4 Environment confirmation	5
2.5 Installation confirmation	6
2.6 Basic commissioning	6
2.7 Safety standard related data	7
3 Product overview	8
3.1 What this chapter contains	8
3.2 Basic principle	8
3.3 Product specifications	9
3.4 Product nameplate	12
3.5 Model code	12
3.6 Product ratings	13
3.6.1 AC 3PH 200V-240V	13
3.6.2 AC 3PH 380V-480V	14
3.6.3 AC 3PH 520V-600V	15
3.7 Structure diagram	16
4 Installation guidelines	17
4.1 What this chapter contains	17
4.2 Mechanical installation	17
4.2.1 Installation environment	17
4.2.2 Installation direction	18
4.2.3 Installation mode	19
4.2.4 Single-unit installation	19
4.2.5 Multiple-unit installation	20
4.2.6 Vertical installation	21
4.2.7 Tilted installation	22

4.3 Standard wiring of main circuit	23
4.3.1 Wiring diagram of main circuit	23
4.3.2 Main circuit terminal diagram	24
4.3.3 Wiring process of the main circuit terminals	29
4.4 Standard wiring of control circuit	30
4.4.1 Wiring diagram of basic control circuit	30
4.4.2 Input/output signal connection diagram	32
4.5 Wiring protection	33
4.5.1 Protecting the VFD and input power cable in short circuit	33
4.5.2 Protecting the motor and motor cable in short circuit	34
4.5.3 Protecting the motor and preventing thermal overload	34
4.5.4 Bypass connection	34
5 Basic operation instructions	35
5.1 What this chapter contains	35
5.2 Keypad introduction	35
5.3 Keypad display	39
5.3.1 Displaying stopped-state parameters	39
5.3.2 Displaying running-state parameters	40
5.3.3 Displaying fault information	41
5.4 Operating the VFD through the keypad	41
5.4.1 Entering/exiting menus	41
5.4.2 Editing a parameter list	46
5.4.3 Adding parameters to the parameter list displayed in stopped/running state	47
5.4.4 Adding parameters to the user defined parameter list	47
5.4.5 Editing user defined parameters	48
5.4.6 Editing parameters in parameter groups	49
5.4.7 Monitoring states	49
5.4.8 Autotuning motor parameters	50
5.4.9 Backing up parameters	50
5.4.10 System settings	51
5.4.11 Power-on setup wizard	51
5.5 Basic operation instruction	53
5.5.1 What this section contains	53
5.5.2 Common commissioning procedure	53
5.5.3 Vector control	57
5.5.4 SVPWM control mode	62
5.5.5 Torque control	71
5.5.6 Motor parameter	75
5.5.7 Start/stop control	80
5.5.8 Frequency setting	87
5.5.9 Analog input	91

5.5.10 Analog output	94
5.5.11 Digital input	99
5.5.12 Digital output	108
5.5.13 Simple PLC	113
5.5.14 Multi-step speed running	116
5.5.15 PID control	118
5.5.16 Run at wobbling frequency	123
5.5.17 Local encoder input	124
5.5.18 Commissioning procedures for closed-loop control, position	control and spindle
positioning	125
5.5.19 Fault handling	131
5.5.20 Tension control solutions	136
6 Function parameter list	141
6.1 What this chapter contains	141
6.2 Function parameter list	141
P00 group—Basic functions	142
P01 group—Start/stop control	146
P02 group—Parameters of motor 1	151
P03 group—Vector control of motor 1	
P04 group—V/F control	164
P05 group—Input terminals	172
P06 group—Output terminals	
P07 group—HMI	186
P08 group—Enhanced functions	193
P09 group—PID control	203
P10 group—Simple PLC and multi-step speed control	
P11 group—Protection parameters	211
P12 group—Parameters of motor 2	219
P13 group—Control parameters of synchronous motor	223
P14 group—Serial communication function	225
P15 group—Functions of communication expansion card 1	229
P16 group—Functions of communication expansion card 2	232
P17 group—Status viewing	239
P18 group—Closed-loop control state check	245
P19 group—Expansion card state check	248
P20 group—Encoder of motor 1	250
P21 group—Position control	254
P22 group—Spindle positioning	260
P23 group—Vector control of motor 2	263
P24 group—Encoder of motor 2	265
P25 group—Extension I/O card input functions	269

P26 group—Output functions of expansion I/O card	272
P27 group—Programmable expansion card functions	275
P28 group—Master/slave control functions	278
P90 group—Tension control in speed mode	281
P91 group—Tension control in torque mode	285
P92 group—Customized tension control functions	288
P93 group—Tension control status viewing	290
7 Troubleshooting	293
7.1 What this chapter contains	293
7.2 Indications of alarms and faults	293
7.3 Fault reset	293
7.4 Fault history	293
7.5 VFD faults and solutions	293
7.5.1 Details of faults and solutions	293
7.5.2 Other state	301
7.6 Analysis on common faults	301
7.6.1 Motor fails to work	301
7.6.2 Motor vibrates	302
7.6.3 Overvoltage	303
7.6.4 Undervoltage	303
7.6.5 Unusual heating of motor	304
7.6.6 VFD overheating	305
7.6.7 Motor stalls during ACC	306
7.6.8 Overcurrent	307
7.7 Countermeasures on common interference	308
7.7.1 Interference on meter switches and sensors	308
7.7.2 Interference on communication	309
7.7.3 Failure to stop and indicator shimmering due to motor cable coupling	310
7.7.4 Leakage current and interference on RCD	310
7.7.5 Live device chassis	311
8 Maintenance	312
8.1 What this chapter contains	312
8.2 Periodical inspection	312
8.3 Cooling fan	314
8.4 Capacitor	315
8.4.1 Capacitor reforming	315
8.4.2 Electrolytic capacitor replacement	316
8.5 Power cable	316
9 Communication protocol	318
9.1 What this chapter contains	318
9.2 Modbus protocol introduction	318

ç	9.3 Application of Modbus	318
	9.3.1 RS485	318
	9.3.2 RTU mode	321
ç	9.4 RTU command code and communication data	324
	9.4.1 Command code: 03H, reading N words (continuously reading a maximum of 1	6
	words)	324
	9.4.2 Command code: 06H, writing a word	326
	9.4.3 Command code: 10H, continuous writing	327
	9.4.4 Data address definition	327
	9.4.5 Fieldbus scale	331
	9.4.6 Error message response	332
	9.4.7 Read/Write operation example	334
ç	9.5 Common communication faults	339
Appen	dix A Expansion cards	340
,	A.1 Dimensions and installation	340
,	A.2 Wiring	343
,	A.3 IO cards	343
	A.3.1 IO Card (UMI-S0170)	343
,	A.4 Communication cards	346
	A.4.1 CANopen communication card (UMI-S0006)	346
	A.4.2 Ethernet/IP communication card (UMI-S0007) and Modbus TCP communication	on
	card (UMI-S0009)	347
	A.4.3 EtherCAT communication card (UMI-S0008)	349
/	A.5 PG cards	352
	A.5.1 Sin/Cos PG card (UMI-S0014)	352
	A.5.2 Resolver PG card (UMI-S0013)	354
	A.5.3 Multifunction incremental PG card (UMI-S0011)	356
	A.5.4 24V incremental PG card (UMI-S0010)	359
Appen	dix B Technical data	362
	B.1 What this chapter contains	362
	B.2 Derated application	362
	B.2.1 Capacity	362
	B.2.2 Derating	362
	B.3 Motor connection data	365
	B.3.1 EMC compatibility and motor cable length	365
Appen	dix C Dimensions	366
(C.1 What this chapter contains	366
(C.2 Keypad structure	366
	C.2.1 Structure diagram	366
	C.2.2 Keypad installation bracket	366
(C 3 VED etructure	367

C.4 Dimensions of VFDs of AC 3PH 200V–240V and 380V–480V	367
C.4.1 Wall installation dimensions	367
C.4.2 Flange installation dimensions	370
C.4.3 Floor installation dimensions	372
C.5 Dimensions of VFDs of AC 3PH 520V-600V	373
C.5.1 Wall installation dimensions	373
C.5.2 Flange installation dimensions	375
Appendix D Optional peripheral accessories	377
D.1 What this chapter contains	377
D.2 Wiring of peripheral accessories	377
D.3 Power supply	378
D.4 Cables	378
D.4.1 Power cables	378
D.4.2 Control cables	379
D.4.3 Cable arrangement	382
D.4.4 Insulation inspection	383
D.5 Breaker and electromagnetic contactor	383
D.6 Reactors	385
D.7 Filters	387
D.8 Brake system	387
D.8.1 Braking component selection	387
D.8.2 Braking resistor cable selection	390
D.8.3 Braking resistor installation	390
Appendix E STO function description	392
E.1 STO function logic table	392
E.2 STO channel delay description	392
E.3 STO function installation checklist	393
Appendix F Acronyms and abbreviations	394
Appendix G Energy efficiency data	395

1 Safety precautions

1.1 What this chapter contains

Read this manual carefully and follow all safety precautions before moving, installing, operating and servicing the variable-frequency drive (VFD). If these safety precautions are ignored, physical injury or death may occur, or damage may occur to the equipment.

If any physical injury or death or damage to the equipment occur due to neglect of the safety precautions in the manual, our company will not be responsible for any damages and we are not legally bound in any manner.

1.2 Safety definition

Danger: Serious physical injury or even death may occur if related requirements are not followed.

Warning: Physical injury or damage to the equipment may occur if related requirements are not followed.

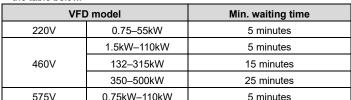
Note: Procedures taken to ensure proper operation.

Qualified electricians: People working on the device should take part in professional electrical and safety training, receive the certification and be familiar with all steps and requirements of installing, commissioning, operating and maintaining the device to prevent any emergencies.

1.3 Warning symbols

Warnings caution you about conditions which can result in serious injury or death and/or damage to the equipment, and advice on how to avoid the danger. Following warning symbols are used in this manual.

Symbol	Name	Instruction	Abbreviation
Danger Danger		Serious physical injury or even death may occur if related requirements are not followed	Ą
Warning	Warning	Physical injury or damage to the equipment may occur if related requirements are not followed	\triangle
Forbid	Electrostatic discharge	Damage to the PCBA board may occur if related requirements are not followed	
Hot	Hot sides	The base of the VFD may become hot. Do not touch.	
<u></u>	Electric shock	As high voltage still presents in the bus capacitor after power off, wait for at least five minutes (or 15 min / 25 min, depending on the warning symbols on the machine) after	<u> </u>


Symbol Name		Instruction	Abbreviation
		power off to prevent electric shock	
	Read manual	Read the operation manual before operating on the equipment	
Note Note		Procedures taken to ensure proper operation	Note

1.4 Safety guidelines

Only trained and qualified electricians are allowed to carry out related operations.

Do not perform wiring, inspection or component replacement when power supply is applied. Ensure all the input power supplies are disconnected before wiring and inspection, and wait for at least the time designated on the VFD or until the DC bus voltage is less than 36V. The minimum waiting time is listed in the table below.

Do not modify the VFD unless authorized; otherwise, fire, electric shock or other injuries may occur.

The base of the heat sink may become hot during running. Do not touch to avoid burns.

The electrical parts and components inside the VFD are electrostatic. Take measures to prevent electrostatic discharge during related operation.

1.4.1 Delivery and installation

Install the VFD on fire-retardant material and keep the VFD away from combustible materials.

- Connect the optional braking parts (braking resistors, braking units or feedback units) according to the wiring diagram.
- ♦ Do not operate on a damaged or incomplete VFD.
- Do not touch the VFD with wet items or body parts; otherwise, electric shock may occur.
- Solid State motor overload protection reacts when reaches 150% of FLA.

Note:

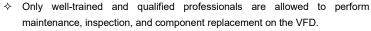
Select appropriate tools for delivery and installation to ensure a safe and proper running of the VFD and avoid physical injury or death. To ensure physical safety, the installation staff should take

mechanical protective measures like wearing exposure shoes and working uniforms.

- ♦ Ensure to avoid physical shock or vibration during delivery and installation.
- Do not carry the VFD by its front cover only as the cover may fall off.
- ♦ Installation site should be away from children and other public places.
- The VFD should be used in proper environment (see section 4.2.1 Installation environment for details).
- ♦ Prevent the screws, cables and other conductive parts from falling into the VFD,
- As leakage current of the VFD during running may exceed 3.5mA, ground properly and ensure the grounding resistance is less than 10Ω. The conductivity of PE grounding conductor is the same with that of the phase conductor (with the same cross sectional area). For models higher than 30 kW, the cross sectional area of the PE grounding conductor can be slightly less than the recommended area.
- R, S and T are the power input terminals, and U, V and W are output motor terminals. Connect the input power cables and motor cables properly; otherwise, damage to the VFD may occur.

1.4.2 Commissioning and running

- Disconnect all power sources applied to the VFD before terminal wiring, and wait for at least the time designated on the VFD after disconnecting the power sources.
- High voltage presents inside the VFD during running. Do not carry out any operation on the VFD during running except for keypad setting. The control terminals of VFD form extra-low voltage circuits. Therefore, you need to prevent the control terminals from connecting to accessible terminals of other devices.
- The VFD may start up by itself when P01.21 (restart after power down) is set to 1. Do not get close to the VFD and motor.
- ♦ The VFD cannot be used as "Emergency-stop device".
- The VFD cannot act as an emergency brake for the motor; it is a must to install mechanical braking device.



- During driving permanent magnet synchronous motor, besides above-mentioned items, the following work must be done before installation and maintenance.
 - Disconnect all the input power sources including main power and control power.
 - Ensure the permanent-magnet synchronous motor has been stopped, and the voltage on output end of the VFD is lower than 36V.
 - After the permanent-magnet synchronous motor is stopped, wait for at least the time designated on the VFD, and ensure the voltage between "+" and "-" is lower than 36V.
 - 4. During operation, it is a must to ensure the permanent-magnet synchronous motor cannot run again by the action of external load; it is recommended to install effective external braking device or disconnect the direct electrical connection between permanent-magnet synchronous motor and the VFD.

- ♦ Do not switch on or switch off input power sources of the VFD frequently.
- For VFDs that have been stored for a long time, set the capacitance and carry out inspection and pilot run on the VFD before use.

♦ Close the front cover before running; otherwise, electric shock may occur.

1.4.3 Maintenance and component replacement

- Disconnect all the power sources applied to the VFD before terminal wiring, and wait for at least the time designated on the VFD after disconnecting the power sources.
- Take measures to prevent screws, cables and other conductive matters from falling into the VFD during maintenance and component replacement.

Note:

- ♦ Use proper torque to tighten the screws.
- Keep the VFD and its parts and components away from combustible materials during maintenance and component replacement.
- Do not carry out insulation voltage-endurance test on the VFD, or measure the control circuits of the VFD with megohmmeter.
- Take proper anti-static measures on the VFD and its internal parts during maintenance and component replacement.

1.4.4 What to do after scrapping

♦ The heavy metals inside the VFD should be treated as industrial effluent.

When the life cycle ends, the product should enter the recycling system. Dispose of it separately at an appropriate collection point instead of placing it in the normal waste stream.

2 Quick start

2.1 What this chapter contains

This chapter introduces the basic principles required during installation commissioning. You can realize quick installation commissioning by following these principles.

2.2 Unpack inspection

Check as follows after receiving products.

- 1. Check whether the packing box is damaged or dampened.
- Check the model identifier on the exterior surface of the packing box is consistent with the purchased model.
- Check whether the interior surface of packing box is improper, for example, in wet condition, or whether the enclosure of the VFD is damaged or cracked.
- Check whether the nameplate of the VFD is consistent with the model identifier on the exterior surface of the packing box.
- Check whether the accessories (including user's manual, control keypad and expansion card units) inside the packing box are complete.

2.3 Application confirmation

Check the following items before operating on the VFD.

- Verify the load mechanical type to be driven by the VFD, and check whether overload occurred to the VFD during actual application, or whether the VFD power class needs to be enlarged.
- 2. Check whether the actual running current of load motor is less than rated VFD current.
- Check whether the control precision required by actual load is the same with the control precision provided by the VFD.
- 4. Check whether the grid voltage is consistent with rated VFD voltage.
- 5. Check whether the functions required need an optional expansion card to be realized.

2.4 Environment confirmation

Check the following items before use.

- Check whether the ambient temperature of the VFD during actual application exceeds 40°C, if yes, derate 1% for every additional 1°C (for details, see section B.2.2 Derating). In addition, do not use the VFD when the ambient temperature exceeds 50°C.
 - Note: For cabinet-type VFD, its ambient temperature is the air temperature inside the cabinet.
- Check whether ambient temperature of the VFD during actual application is below -10°C, if yes, install heating facility.
 - **Note:** For cabinet-type VFD, its ambient temperature is the air temperature inside the cabinet.

Check whether the altitude of the application site exceeds 1000m. If yes, derate 1% for every increase of 100m; when the installation site altitude exceeds 3000m, consult with Unitronics support.

- Check whether the humidity of application site exceeds 90%. If yes, check whether condensation occurred. If condensation does exist, take additional protective measures.
- Check whether there is direct sunlight or animal intrusion in the application site, if yes, take additional protective measures.
- Check whether there is dust, explosive or combustible gases in the application site, if yes, take additional protective measures.

2.5 Installation confirmation

After the VFD is installed properly, check the installation condition of the VFD.

- Check whether the input power cable and current-carrying capacity of the motor cable fulfill
 actual load requirements.
- Check whether peripheral accessories (including input reactors, input filters, output reactors, output filters, DC reactors, braking units and braking resistors) of the VFD are of correct type and installed properly; check whether the installation cables fulfill requirements on currentcarrying capacity.
- 3. Check whether the VFD is installed on fire-retardant materials; check whether the hot parts (such as reactors and braking resistors) are kept away from combustible materials.
- Check whether all the control cables are routed separately with power cables based on EMC requirement.
- Check whether all the grounding systems are grounded properly according to VFD requirements.
- Check whether installation spacing of the VFD complies with the requirements in operation manual.
- Check whether installation mode of the VFD complies with the requirements in operation manual. Vertical installation should be adopted whenever possible.
- 8. Check whether external connecting terminals of the VFD are firm and tight enough, and whether the moment is up to the requirement.
- Check whether there are redundant screws, cables or other conductive objects inside the VFD, if yes, take them out.

2.6 Basic commissioning

Carry out basic commissioning according to the following procedures before operating on the VFD.

- Select motor type, set motor parameters and select VFD control mode according to actual motor parameters.
- Whether autotuning is needed? If possible, disconnect the motor load to carry out dynamic parameter autotuning; if the load cannot be disconnected, perform static autotuning.
- Adjust the acceleration and deceleration time based on actual working conditions of the load.

4. Jogging to carry out device commissioning. Check whether the motor running direction is consistent with the direction required, if no, it is recommended to change the motor running direction by exchanging the motor wiring of any two phases.

5. Set all the control parameters and carry out actual operation.

2.7 Safety standard related data

	IEC/EN 61508 (type A system)						ISO	13849**		
SIL	PFH	HFT	SFF	λdu	λdd	PTI*	PL	CCF	DC	Category
2	8.73*10-10	1	71.23%	1.79*10-9	0	1 year	d	57	60%	3

^{*} PTI: proof test interval.

^{**} According to the categorization defined in EN ISO 13849-1.

3 Product overview

3.1 What this chapter contains

This chapter mainly introduces the operation principles, product features, layouts, nameplates, and model instructions.

3.2 Basic principle

UMI-B7 series VFD is used to control asynchronous AC induction motor and permanent-magnet synchronous motor. The figure below shows the main circuit diagram of the VFD. The rectifier converts 3PH AC voltage into DC voltage, and the capacitor bank of the intermediate circuit stabilizes the DC voltage. The inverter converts DC voltage into the AC voltage used by AC motor. When the circuit voltage exceeds the maximum limit value, external braking resistor will be connected to intermediate DC circuit to consume the feedback energy.

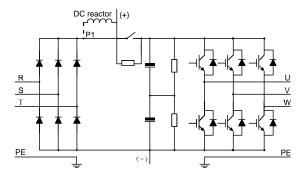


Figure 3-1 Simplified main circuit diagram (VFDs of 220V 18.5–55kW; 460V ≥37kW)

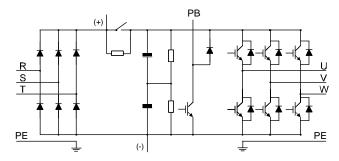


Figure 3-2 Simplified main circuit diagram (VFDs of 220V ≤15kW; 460V ≤30kW)

Figure 3-3 Simplified main circuit diagram (VFDs of 575V ≤18.5kW)

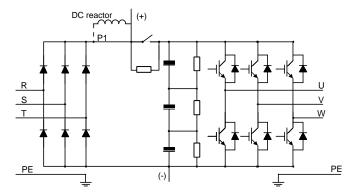


Figure 3-4 Simplified main circuit diagram (VFDs of 575V ≥22kW)

Note:

- The VFDs of 220V 18.5–55kW, 460V ≥37kW, and 575V ≥22kW support external DC reactors and braking units. DC reactors and braking units are optional.
- The VFDs of 220V ≤15kW, 460V ≤30kW, and 575V ≤18.5kW are equipped with braking units and support external braking resistors and DC reactors which are optional.
- Remove the copper tag between P1 and (+) before connecting an external DC reactor.

3.3 Product specifications

Func	tion description	Specification	
		AC 3PH 200V–240V Rated voltage: 220V	
	Input voltage (V)	AC 3PH 380V–480V Rated voltage: 460V	
D		AC 3PH 520V–600V Rated voltage: 575V	
Power input	Allowable voltage	-15%-+10%	
	fluctuation	-13 %-+10 %	
	Input current (A)	See section 3.6 Product ratings.	

Func	tion description	Specification
	Input frequency (Hz)	50Hz or 60Hz, allowable range: 47–63Hz
	Output voltage (V)	0-Input voltage
Power	Output current (A)	See section 3.6 Product ratings.
output	Output power (kW)	See section 3.6 Product ratings.
	Output frequency (Hz)	0–599Hz
		Space voltage pulse width modulation (SVPWM),
	Control mode	sensorless vector control (SVC), and feedback vector
		control (FVC)
		Asynchronous motor, permanent-magnet synchronous
	Motor type	motor
	0	Asynchronous motor 1: 200 (SVC); Synchronous motor 1:
	Speed regulation ratio	20 (SVC), 1:1000 (FVC)
Technical	Speed control precision	±0.2% (SVC); ±0.02% (FVC)
control	Speed fluctuation	± 0.3% (SVC)
performance	Torque response	<20ms SVC); <10ms (FVC)
	Torque control precision	10% (SVC); 5% (FVC)
		Asynchronous motor: 0.25Hz/150% (SVC)
	Starting torque	Synchronous motor: 2.5 Hz/150% (SVC)
		0Hz/200% (FVC)
		150% of the rated current: 1 minute
	Overload capacity	180% of the rated current: 10 seconds
		200% of the rated current: 1 second
		Digital, analog, pulse frequency, multi-step speed
	Frequency setting	running, simple PLC, PID, Modbus communication, and
	mode	so on
		The setting combinations and channels can be switched.
	Automatic voltage	Keeps constant output voltage when grid voltage
	regulation function	changes.
Running	Fault protection	Provides over 30 fault protection functions: overcurrent,
control	function	overvoltage, undervoltage, over-temperature, phase loss
performance	Tariotion	and overload, and so on.
portormanos	Speed tracking restart	Realizes impact-free starting of the motor in rotating.
	function	Note: This function is available for ≥4kW models.
	Retention at transient	Keeps running with regenerative energy when the grid
	voltage drop	transiently drops.
	Motor switchover	Supports two groups of motor parameters to control
		motor switchover.
	STO	Compliant with SIL2
	Terminal analog input resolution	No more than 20mV
Peripheral	Terminal digital input	
interface	resolution	No more than 2ms
	Analog input	Two inputs. Al1: 0-10V/0-20mA; Al2: -10-10V
	. J	, , , , , , , , , , , , , , , , , , , ,

Function description		Specification	
	Analog output	One output. AO1: 0-10V/0-20mA	
	Digital input	Four regular inputs; max. frequency: 1kHz; internal impedance: $3.3k\Omega$	
		Two high-speed inputs; max. frequency: 50kHz; supports quadrature encoder input; with speed measurement function	
	Digital output	One high-speed pulse output; max. frequency: 50kHz One Y terminal open collector output	
	Relay output	Two programmable relay outputs RO1A NO, RO1B NC, RO1C common port RO2A NO, RO2B NC, RO2C common port Contact capacity: 3A/AC250V, 1A/DC30V	
	Extension interface	Three extension interfaces: SLOT1, SLOT2, SLOT3 (only two are available for VFDs of 220V 0.75kW and 460V 1.5–2.2kW) Supported expansion cards: PG card, programmable card, communication card, I/O card, and so on	
	Installation mode	Supporting wall-mounting, floor-mounting and flange- mounting	
	Temperature of running environment	-10–50°C. Derating is required if the ambient temperature exceeds 40°C. For details about derating, see section B.2.2 Derating.	
	Ingress protection rating	IP20	
	Pollution level	Level 2	
	Cooling mode	Air cooling	
Others	Brake unit	Built-in for VFDs of 220V ≤15kW, 460V ≤30kW, and 575V ≤18.5kW; optional for VFDs of 220V 18.5–55kW, 460V ≥37kW, and 575V ≥22kW	
Others	EMC filter	The VFDs of 460V are configured with built-in C3 filters, meeting the requirements of IEC61800-3 C2.	
	Overvoltage category	For input voltage 200–240V: transient surge suppression shall be installed on the line side of this equipment and shall be rated 220V (phase to ground), 220V (phase to phase), suitable for overvoltage category III, and shall provide protection for a rated impulse withstand voltage peak of 4kV. For input voltage 380–480V: transient surge suppression shall be installed on the line side of this equipment and shall be rated 480V (phase to ground), 480V (phase to phase), suitable for overvoltage category III, and shall provide protection for a rated impulse withstand voltage	

Function description	Specification
	peak of 6kV.
	For input voltage 520–600V: transient surge suppression
	shall be installed on the line side of this equipment and
	shall be rated 575V (phase to ground), 575V (phase to
	phase), suitable for overvoltage category III, and shall
	provide protection for a rated impulse withstand voltage
	peak of 6kV.

3.4 Product nameplate

Figure 3-5 Product nameplate

Note:

This is an example of the nameplate of standard UMI-B7 products. The marking such as CE/TUV/IP20 on the top right will be marked according to actual certification conditions.

3.5 Model code

The model code contains product information. You can find the model code on the nameplate and simple nameplate of the VFD.

UMI-	XXXX	YY-	B7
1	2	3	4

Figure 3-6 Model code

Field	Sign	Description	Content
Product	1)	Abbreviation of product UMI: Unitronics Motion Inverter	
Rated power	2	0022: 2.2 kW Rated Power 0450: 4.5 kW 1100: 110 kW	
Voltage level	3	CU: AC 3PH 200V–240V Rated voltage: 220V EU: AC 3PH 380V–480V Rated voltage: 460V FU: AC 3PH 520V–600V Rated voltage: 575V	
Series	4	Abbreviation of product series	B7

3.6 Product ratings

3.6.1 AC 3PH 200V-240V

VFD model	Output power (kW)	Input current (A)	Output current (A)
UMI-0007CU-B7	0.75	5	4.5
UMI-0015CU-B7	1.5	7.7	7
UMI-0022CU-B7	2.2	11	10
UMI-0040CU-B7	4	17	16
UMI-0055CU-B7	5.5	21	20
UMI-0075CU-B7	7.5	31	30
UMI-0110CU-B7	11	43	42
UMI-0150CU-B7	15	56	55
UMI-0180CU-B7	18.5	71	70
UMI-0220CU-B7	22	81	80
UMI-0300CU-B7	30	112	110
UMI-0370CU-B7	37	132	130
UMI-0450CU-B7	45	163	160
UMI-0550CU-B7	55	200	200

- The input current of 0.75–55 kW VFDs is measured at the input voltage of 220V without reactors.
- The rated output current is the output current measured at the output voltage of 220V.
- Within the allowable input voltage range, the output current/power cannot exceed the rated output

current/power.

3.6.2 AC 3PH 380V-480V

Inverter model	Output power (kW)	Input current (A)	Output current (A)
UMI-0015EU-B7	1.5	5	3.7
UMI-0022EU-B7	2.2	5.8	5
UMI-0040EU-B7	4	13.5	9.5
UMI-0055EU-B7	5.5	19.5	14
UMI-0075EU-B7	7.5	25	18.5
UMI-0110EU-B7	11	32	25
UMI-0150EU-B7	15	40	32
UMI-0180EU-B7	18.5	47	38
UMI-0220EU-B7	22	56	45
UMI-0300EU-B7	30	70	60
UMI-0370EU-B7	37	80	75
UMI-0450EU-B7	45	94	92
UMI-0550EU-B7	55	128	115
UMI-0750EU-B7	75	160	150
UMI-0900EU-B7	90	190	180
UMI-1100EU-B7	110	225	215
UMI-1320EU-B7	132	265	260
UMI-1600EU-B7	160	310	305
UMI-1850EU-B7	185	345	340
UMI-2000EU-B7	200	385	380
UMI-2200EU-B7	220	430	425
UMI-2500EU-B7	250	485	480
UMI-2800EU-B7	280	545	530
UMI-3150EU-B7	315	610	600
UMI-3500EU-B7	350	625	650
UMI-4000EU-B7	400	715	720
UMI-5000EU-B7	500	890	860

- The input current of 1.5–200kW VFDs is measured at the input voltage of 460V without reactors.
- The input current of 220–500kW VFDs is measured at the input voltage of 460V with reactors.
- The rated output current is the output current measured at the output voltage of 460V.
- Within the allowable input voltage range, the output current/power cannot exceed the rated output current/power.

3.6.3 AC 3PH 520V-600V

Inverter model	Output power (kW)	Input current (A)	Output current (A)
UMI-0007FU-B7	0.75	3.3	2.1
UMI-0015FU-B7	1.5	5	3.2
UMI-0022FU-B7	2.2	7	4.5
UMI-0040FU-B7	4	10	6.5
UMI-0055FU-B7	5.5	13	9
UMI-0075FU-B7	7.5	16.5	12
UMI-0110FU-B7	11	19	16
UMI-0150FU-B7	15	24	21
UMI-0180FU-B7	18.5	35	27
UMI-0220FU-B7	22	40	35
UMI-0300FU-B7	30	47	45
UMI-0370FU-B7	37	52	52
UMI-0450FU-B7	45	65	62
UMI-0550FU-B7	55	85	86
UMI-0750FU-B7	75	95	98
UMI-0900FU-B7	90	118	120
UMI-1100FU-B7	110	145	150

- The input current of 0.75–110kW VFDs is measured at the input voltage of 575V without reactors.
- The rated output current is the output current measured at the output voltage of 575V.
- Within the allowable input voltage range, the output current/power cannot exceed the rated output current/power.

3.7 Structure diagram

The VFD layout is shown in the figure below (using the VFD of 460V 30kW as an example).

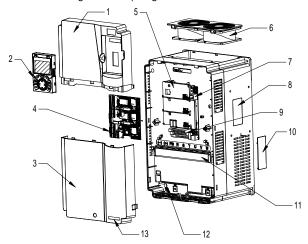
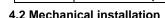


Figure 3-7 Structure diagram

No.	Name	Instruction	
1	Upper cover	Protect internal components and parts	
2	Keypad	See section 5.4 Operating the VFD through the keypad for details.	
3	Lower cover	Protect internal components and parts	
4	Expansion card	Optional, see Appendix A for details.	
5	Baffle of control board	Protect the control board and install expansion card	
6	Cooling fan	See chapter 8 Maintenance.	
7	Keypad interface	Connect the keypad	
8	Nameplate	See section 3.4 Product nameplate for details.	
9	Control terminals	See chapter 4 Installation guidelines for details.	
10	Cover plate of heat emission hole	Optional. Cover plate can upgrade protection level, however, as it will also increase internal temperature, derated use is required.	
11	Main circuit terminal	See chapter 4 Installation guidelines for details.	
12	POWER indicator	Power indicator	
13	Label of UMI-B7 product series	See section 3.5 Model code for details.	


4 Installation guidelines

4.1 What this chapter contains

This chapter introduces the mechanical and electrical installations of the VFD.

the warranty does not cover.

♦ Only well trained and qualified professionals are allowed to carry out the operations mentioned in this chapter. Please carry out operations according to instructions presented in Safety precautions. Ignoring these safety precautions may lead to physical injury or death, or device damage.
 ♦ Ensure the VFD power is disconnected before installation. If the VFD has been powered on, disconnect the VFD and wait for at least the time designated on the VFD, and ensure the POWER indicator is off. You are recommended to use a multimeter to check and ensure the VFD DC bus voltage is below 36V.
 ♦ Installation must be designed and done according to applicable local laws and regulations. Unitronics does not assume any liability whatsoever for any installation which breaches local laws and regulations. If recommendations given by Unitronics are not followed, the VFD may experience problems that

4.2.1 Installation environment

Installation environment is essential for the VFD to operate at its best in the long run. The installation environment of the VFD should meet the following requirements.

Environment	Condition
Installation site	Indoor
Ambient temperature	 → -10-+50°C → When the ambient temperature exceeds 40°C, derate 1% for every additional 1°C. For details about derating, see section B.2.2 Derating. → It is not recommended to use the VFD when the ambient temperature is above 50°C. → In order to improve reliability, do not use the VFD in cases where the temperature changes rapidly. → When the VFD is used in a closed space such as control cabinet, use cooling fan or air conditioner to prevent internal temperature from exceeding the temperature required. → When the temperature is too low, if restart a VFD which has been idled for a long time, it is required to install external heating device before use to eliminate the freeze inside the VFD, failing to do so may cause damage to the VFD.
Humidity	♦ The relative humidity (RH) of the air is less than 90%.

Environment	Condition	
	♦ Condensation is not allowed.	
	♦ The max RH cannot exceed 60% in the environment where there are	
	corrosive gases.	
Storage	-30-+60°C	
temperature	-30-+00 C	
	The installation site should meet the following requirements.	
	Away from electromagnetic radiation sources.	
	Away from oil mist, corrosive gases and combustible gases.	
Running	♦ Ensure foreign object like metal powder, dust, oil and water will not fall into	
environment	the VFD (do not install the VFD onto combustible object like wood).	
environment	Away from radioactive substance and combustible objects.	
	♦ Away from harmful gases and liquids.	
	♦ Low salt content.	
	♦ No direct sunlight	
	♦ Below 1000m.	
Altitude	♦ When the altitude exceeds 1000m, derate 1% for every additional 100m.	
	♦ When the altitude exceeds 3000m, consult with the Unitronics support.	
Vibration	Max. vibration acceleration: 5.8m/s² (0.6g)	
Installation	Install the VFD vertically to ensure good heat dissipation effect	
direction	יווי איבט vertically to ensure good fleat dissipation effect	

Note:

- The UMI-B7 series VFD should be installed in a clean and well-ventilated environment based on the IP level.
- The cooling air must be clean enough and free from corrosive gases and conductive dust.

4.2.2 Installation direction

The VFD can be installed on the wall or in a cabinet.

The VFD must be installed vertically. Check the installation position according to following requirements. See Appendix C Dimensions.

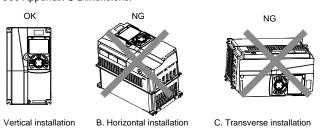


Figure 4-1 Installation direction of the VFD

4.2.3 Installation mode

There are three kinds of installation modes based on different VFD dimensions.

- Wall-mounting: for the VFDs of 220V≤55kW, 460V ≤200kW, and 575V
- Flange-mounting: for the VFDs of 220V≤55kW, 460V ≤200kW, and 575V
- Floor-mounting: for the VFDs of 460V 220–500kW

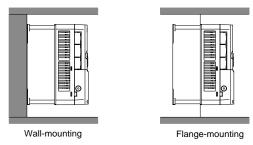
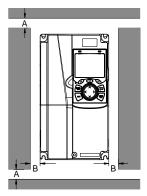


Figure 4-2 Installation mode


The installation steps are described as follows:

- Mark the position of the installation hole. See Appendix C Dimensions for the position of installation hole.
- 2. Mount the screws or bolts onto the designated position.
- 3. Put the VFD on the wall.
- 4. Tighten the fixing screws on the wall.

Note:

Flange plates are required when installing VFDs of 220V 0.75–15kW and 460V in flange mode, and for VFDs of 220V 18.5–55kW and 460V 37–200kW, no flange plate is required.

4.2.4 Single-unit installation

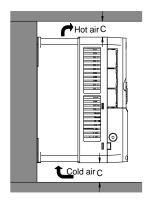
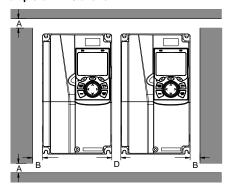



Figure 4-3 Single-unit installation

Note: The min. dimension of A, B and C is 100mm.

4.2.5 Multiple-unit installation

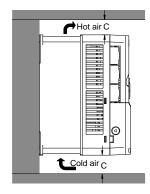


Figure 4-4 Parallel installation

- When you install VFDs in different sizes, align the top of each VFD before installation for the convenience of future maintenance.
- The min. dimension of A, B, D and C is 100mm.

4.2.6 Vertical installation

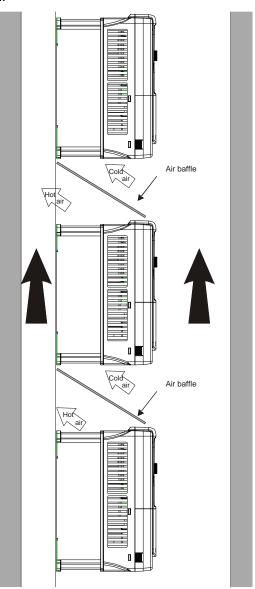


Figure 4-5 Vertical installation

Note: During vertical installation, you must install air baffles; otherwise, the VFD will experience mutual interference, and the heat dissipation effect will be degraded.

4.2.7 Tilted installation

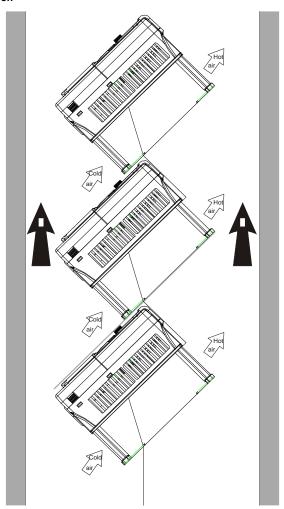


Figure 4-6 Tilted installation

Note: During tilted installation, it is a must to ensure the air inlet duct and air outlet duct are separated from each other to avoid mutual interference.

4.3 Standard wiring of main circuit

4.3.1 Wiring diagram of main circuit

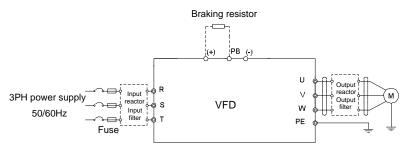


Figure 4-7 Connection diagram of main circuit for the VFD of 220V ≤15kW and 460V ≤30kW

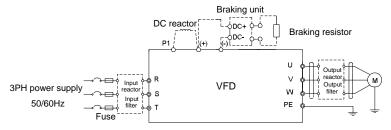


Figure 4-8 Connection diagram of main circuit for the VFDs of 220V 18.5–55kW, and 460V ≥37kW

- The fuse, DC reactor, braking unit, braking resistor, input reactor, input filter, output reactor, and output filter are optional parts. See Appendix D Optional peripheral accessories for details.
- P1 and (+) are short circuited in factory for VFDs of 220V ≥18.5kW and 460V ≥37kW. If you
 need to use them to connect the DC reactor, remove the contact tag between P1 and (+).
- When connecting the braking resistor, take off the yellow warning signs marked with (+) and (-)
 on the terminal block before connecting the braking resistor wire. Otherwise, poor contact may
 occur.

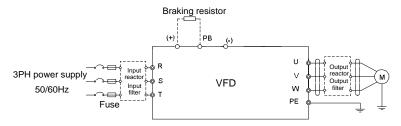


Figure 4-9 Connection diagram of main circuit for the VFDs of 575V 0.75-18.5kW

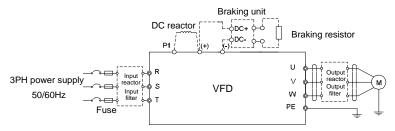


Figure 4-10 Connection diagram of main circuit for the VFDs of 575V ≥22kW

Note:

- The fuse, DC reactor, braking resistor, input reactor, input filter, output reactor, and output filter are
 optional parts. See Appendix D Optional peripheral accessories for details.
- P1 and (+) are short circuited in factory. If you need to use them to connect the DC rector, remove
 the jumper between P1 and (+).

4.3.2 Main circuit terminal diagram

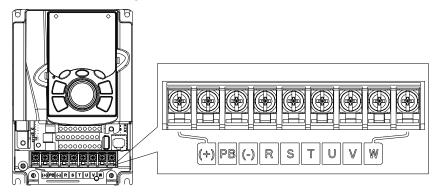


Figure 4-11 Terminals of main circuit for the VFDs of 220V 0.75kW and 460V 1.5-2.2kW

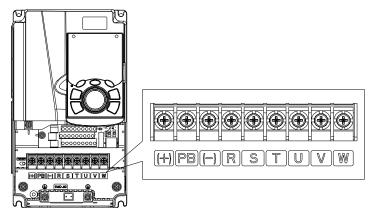


Figure 4-12 Terminals of main circuit for the VFDs of 220V 1.5–2.2kW, 460V 4–5.5kW, and 575V 0.75–2.2kW

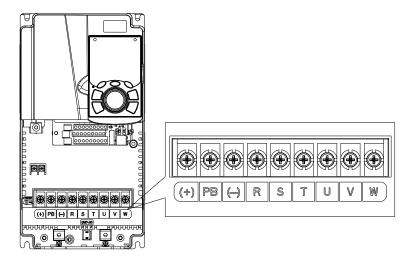


Figure 4-13 Terminals of main circuit for the VFDs of 220V 4–5.5kW, 460V 7.5–11kW, and 575V 4–7.5kW

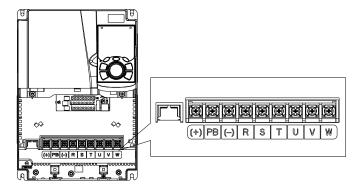


Figure 4-14 Terminals of main circuit for the VFDs of 220V 7.5kW, 460V 15–18.5kW, and 575V 11–18.5kW

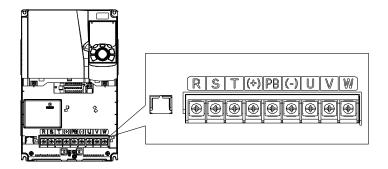


Figure 4-15 Terminals of main circuit for the VFDs of 220V 11–15kW and 460V 22–30kW

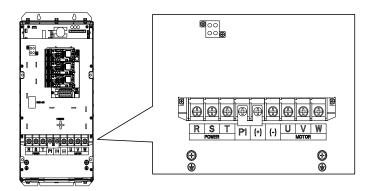


Figure 4-16 Terminals of main circuit for the VFDs of 220V 18.5–30kW, 460V 37–55kW, and 575V 22–37kW

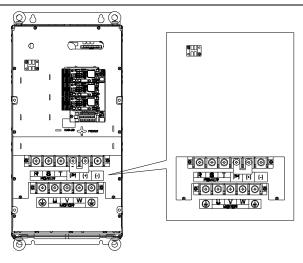


Figure 4-17 Terminals of main circuit for the VFDs of 220V 37–55kW, 460V 75–110kW, and 575V 45–110kW

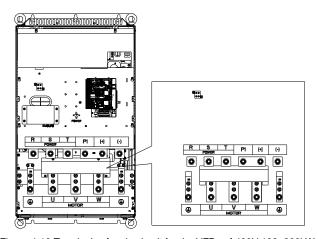


Figure 4-18 Terminals of main circuit for the VFDs of 460V 132-200kW

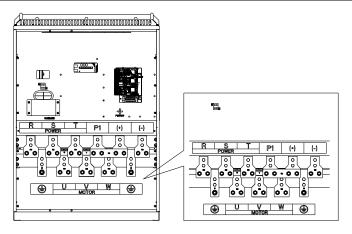


Figure 4-19 Terminals of main circuit for the VFDs of 460V 220-315kW

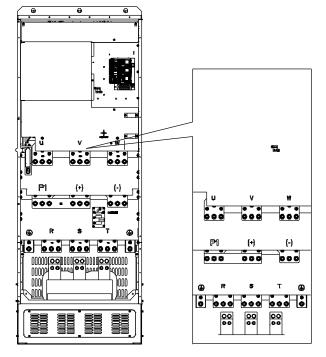


Figure 4-20 Terminals of main circuit for the VFDs of 460V 350-500kW

	220V ≤15kW rminal 460V ≤30kW 575 ≤18.5kW		220V ≥18.5kW	1	
Terminal			460V ≥37kW		Function
			575V ≥22kW		
					3-phase AC input terminals which are
R, S, T	Power inpu	ut of	the main circuit		generally connected with the power
				supply.	
U, V, W	VFD output				3-phase AC output terminals which are
U, V, VV					generally connected with the motor.
P1	1	DC reactor terminal 1		1	P1 and (+) are connected with the
(1)	Braking resistor	D	C reactor terminal 2	2,	terminals of DC reactor.
(+)	terminal 1	br	braking unit terminal 1		(+) and (-) are connected with the
(-)	1	Br	aking unit terminal	2	terminals of braking unit.
PB	Braking resistor		,		PB and (+) are connected with the
РВ	terminal 2	1			terminals of braking resistor.
					Protective grounding terminal. Each
	460\/; the groups	dina	register is less t	than	machine provides two PE terminals as
PE	100hm	460V: the grounding resistor is less than			the standard configuration. These
	TOOTHIT				terminals should be grounded with
				proper techniques.	

Note:

- VFDs of 575V 0.75–18.5kW do not carry P1.
- It is not recommended to use asymmetrical motor cables. If there is a symmetrical grounding conductor in the motor cable besides the conductive shielded layer, ground the grounding conductor on the VFD end and motor end.
- Brake resistor, braking unit and DC reactor are optional parts.
- Route the motor cable, input power cable and control cables separately.
- If the terminal description is "/", the machine does not provide the terminal as the external terminal.
- When sharing the DC bus, the VFDs must be the same in power and must be simultaneously powered on or off.
- In shared DC bus running mode, current balance on the VFD input side must be considered during wiring, and equalizing reactors are recommended to be configured.

4.3.3 Wiring process of the main circuit terminals

- Connect the grounding line of the input power cable to the grounding terminal (PE) of the VFD, and connect the 3PH input cable to R, S and T terminals and tighten up.
- Connect the grounding line of the motor cable to the grounding terminal of the VFD, and connect 3PH motor cable to U, V and W terminals and tighten up.
- 3. Connect the braking resistor which carries cables to the designated position.

4. Fix all the cables outside the VFD mechanically if allowed.

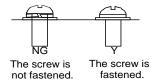


Figure 4-21 Screw installation diagram

4.4 Standard wiring of control circuit

4.4.1 Wiring diagram of basic control circuit

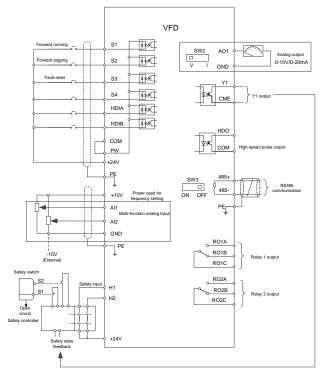


Figure 4-22 Wiring diagram of control circuit

Note: If wire-passing board outlet space is insufficient when all terminals on the control board are wired, cut the knock-out hole on the lower cover for wire outlet. If a dangerous situation occurs when the knock-out hole is cut for a purpose but not wire outlet, we will not bear any responsibility.

Terminal	Instruction					
name	monuom					
+10V	Locally provided +10.5V power					
Al1	Input range: Al1 voltage/current can choose 0–10/ 0–20mA					
	Al2: -10V-+10V voltage					
	• Input impedance: $20k\Omega$ during voltage input; 250Ω during current input					
Al2	Al1 voltage or current input is set by P05.50					
	Resolution ratio: When 10V corresponds to 50Hz, the min. resolution ratio is 5mV					
	25°C, When input above 5V or 10mA, the error is ±0.5%					
GND	Reference ground of +10.5V					
	Output range: 0–10V voltage or 0–20mA current					
AO1	Voltage or current output is set by switch SW2					
	25°C, when output is above 5V or 10mA, the error is ±0.5%					
RO1A	RO1 relay output; RO1A is NO, RO1B is NC, RO1C is common port					
RO1B	Contact capacity: 3A/AC250V, 1A/DC30V					
RO1C	Contact capacity. SAVACESOV, TAVECSOV					
RO2A	RO2 relay output; RO2A is NO, RO2B is NC, RO2C is common port					
RO2B	Contact capacity: 3A/AC250V, 1A/DC30V					
RO2C	Contact capacity. 37/AC230V, 17/DC30V					
	Switch capacity: 50mA/30V					
HDO	Range of output frequency: 0–50kHz					
	Duty ratio: 50%					
COM	Reference ground of +24V					
CME	Common port of open collector output; short connected to COM by default					
Y1	Switch capacity: 50mA/30V					
	Range of output frequency: 0–1kHz					
485+	RS485 differential signal communication port. The standard RS485 communication					
485-	interface should use shielded twisted pair; the 120Ω terminal matching resistor of					
400	RS485 communication is connected by switch SW3.					
PE	Grounding terminal					
	External power input terminal for digital input circuits. In NPN mode, short connect					
PW	PW and +24V. In PNP mode, short connect PW and COM.					
	Voltage range: 12–30V					
24V	User power provided by the VFD. Max. output current: 200mA					
S1	Digital input 1 • Internal impedance: 3.3kΩ					
S2	Digital input 2 • Accept 12–30V voltage input					
S3	Digital input 3 • Bi-directional input terminals, supporting NPN/PNP connection					
	modes					
S4	Digital input 4 • Max. input frequency: 1kHz					
	All are programmable digital input terminals, you can set the					

Terminal name	Instruction				
		terminal function via function codes			
HDIA	Channels for b	oth high frequency pulse input and digital input			
	Max. input freq	uency: 50kHz			
HDIB	Duty ratio: 30%	Outy ratio: 30%–70%			
סוטח	Supports the quadrature encoder input of 24V power supply; equipped with speed-				
	measurement function				
+24V—H1	STO input 1	Safe torque off (STO) redundant input, connect to external NC			
		contact, STO acts when the contact opens, and the VFD stops output			
+24V—H2	STO input 2	 Safety input signal wires use shielded wire whose length is within 25m 			
	·	 H1 and H2 terminals are short connected to +24V by default; it is required to remove the jumper on the terminal before using STO function. 			

4.4.2 Input/output signal connection diagram

Set NPN/PNP mode and internal/external power via U-shaped jumper. PNP internal mode is adopted by default.

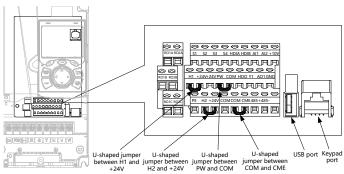


Figure 4-23 Position of U-shaped jumper

Note: As shown in Figure 4-23, the USB port can be used to upgrade the software, and the keypad port can be used to connect an external keypad. The external keypad cannot be used when the keypad of the VFD is used.

If input signal comes from NPN transistors, set the U-shaped jumper between +24V and PW based on the power used according to the figure below.

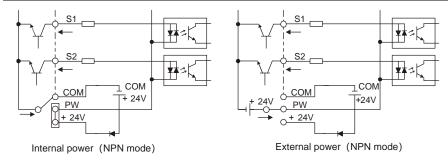


Figure 4-24 NPN mode

If input signal comes from PNP transistor, set the U-shaped jumper based on the power used according to the figure below.

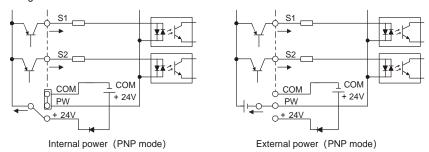


Figure 4-25 PNP mode

4.5 Wiring protection

4.5.1 Protecting the VFD and input power cable in short circuit

Protect the VFD and input power cable during short-circuit to avoid thermal overload.

Carry out protective measures according to the following requirements.

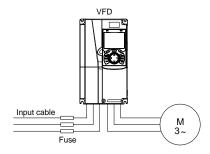


Figure 4-26 Fuse configuration

Note: Select the fuse according to the operation manual. During short-circuit, the fuse will protect input power cables to avoid damage to the VFD; when internal short-circuit occurs to the VFD, it can protect

neighboring equipment from being damaged.

4.5.2 Protecting the motor and motor cable in short circuit

If the motor cable is selected based on rated VFD current, the VFD will be able to protect the motor cable and motor during short circuit without other protective devices.

If the VFD is connected to multiple motors, it is a must to use a separated thermal overload switch or breaker to protect the cable and motor, which may require the fuse to cut off the short circuit current.

4.5.3 Protecting the motor and preventing thermal overload

According to the requirements, the motor must be protected to prevent thermal overload. Once overload is detected, you must cut off the current. The VFD is equipped with motor thermal overload protection function, which will block output and cut off the current (if necessary) to protect the motor.

4.5.4 Bypass connection

In some critical occasions, industrial frequency conversion circuit is necessary to ensure proper operation of the system when VFD fault occurs.

In some special cases, such as only soft startup is needed, it will convert to power-frequency operation directly after soft startup, corresponding bypass link is also needed.

♦ Do not connect any power source to VFD output terminals U, V and W. The voltage applied to motor cable may cause permanent damage to the VFD.

If frequent switchover is needed, you can use the switch which carries mechanical interlock or a contactor to ensure motor terminals will not be connected to input power cables and VFD output ends simultaneously.

5 Basic operation instructions

5.1 What this chapter contains

This chapter tells how to use the VFD keypad and the commissioning procedures for common functions of the VFD.

5.2 Keypad introduction

The LCD keypad is included in the standard configuration of UMI-B7 series VFD. You can control the VFD start/stop, read state data and set parameters via keypad.

Figure 5-1 Keypad diagram

Note:

- LCD keypad is armed with real-time clock, which can run properly after power off when installed with batteries. The battery (type: CR2032) should be purchased separately.
- 2. LCD keypad support parameter-copy.
- 3. When extending the keypad cable to install the keypad, M3 screws can be used to fix the keypad onto the door plate, or optional keypad installation bracket can be used. If you need install the keypad on another position rather than on the VFD, use a keypad extension cable with a standard RJ45 crystal head.

No.	Name	Instruction			
1	State Indicator	(1)	RUN	Running indicator; LED off – the VFD is stopped; LED blinking – the VFD is in parameter autotune	

No.	Name	Instruction				
					LED on – the VFD is running	
		(2) TRIP			Fault indicator; LED on – in fault state LED off – in normal state LED blinking – in pre-alarm state	
		(3)	QUICK/JOG		Short-cut key indicator, which displays different state under different functions, see definition of QUICK/JOG key for details	
		(4)			The function of function key	
		(5)		Function key	varies with the menu; The function of function key	
		(6)	6		is displayed in the footer	
2	Button area	(7)	QUICK	Short-cut key	Re-definable. It is defined as JOG function by default, namely jogging. The function of short-cut key can be set by the ones of P07.02, as shown below. 0: No function 1: Jogging (linkage indicator (3); logic: NO) 2: Reserved 3: FWD/REV switchover (linkage indicator (3); logic: NC) 4: Clear UP/DOWN setting (linkage indicator (3) logic: NC) 5: Coast to stop (linkage indicator (3); logic: NC) 6: Switching running command reference mode in order (linkage indicator (3); logic: NC) 7: Reserved Note: After restoring to	

No.	Name	Instruction				
		(8)	Enter	Confirmation key	default values, the default function of short-cut key (7) is 1. The function of confirmation key varies with menus, such as confirming parameter setting, confirming parameter selection, entering the next menu, etc.	
		(9)	RUN 🔷	Running key	Under keypad operation mode, the running key is used for running operation or autotuning operation.	
		(10)	STOP RST	Stop/ Reset key	During running state, press the Stop/Reset key can stop running or autotuning; this key is limited by P07.04. During fault alarm state, all the control modes can be reset by this key.	
		(11)	^ >	Direction key UP: DOWN: LEFT: RIGHT:	UP: The function of UP key varies with interfaces, such as shifting up the displayed item, shifting up the selected item, and changing digits; DOWN: The function of DOWN key varies with interfaces, such as shifting down the displayed item, shifting down the selected item, and changing digits; LEFT: The function of LEFT key varies with interfaces, such as switch over the monitoring interface, such as shifting the cursor leftward, exiting current menu and returning to previous menu; RIGHT: The function of	

No.	Name	Instruction				
					RIGHT key varies with	
					interfaces, such as switch	
					over the monitoring interface,	
					shifting the cursor rightward,	
					enter the next menu etc.	
					240×160 dot-matrix LCD;	
	D: 1	(12)	LCD	Display	display three monitoring	
3	Display area			screen	parameters or six sub-menu	
					items simultaneously	
		(13)	RJ45	RJ45	RJ45 interface is used to	
			interface	interface	connect to the VFD.	
					Remove this cover when	
		(4.4)	Battery	Clock battery	replacing or installing clock	
4	Others	(14)	cover	cover	battery, and close the cover	
					after battery is installed	
		(15)	USB	main: LICD	Mini USB terminal is used to	
				mini USB	connect to the USB flash	
			terminal	terminal	drive through an adapter.	

The LCD has different display areas, which displays different contents under different interfaces. The figure below is the main interface of stop state.

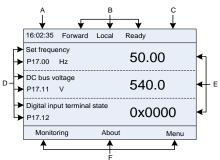


Figure 5-2 Main interface of LCD

Area	Name	Used to		
Header A	Real-time display	Display the real-time; clock battery is not included; the time		
neadel A	area	needs to be reset when powering on the VFD		
Header B	VFD running state display area	Display the running state of the VFD: 1. Display motor rotating direction: "Fwd" – Run forward during operation; "Rev" – Run reversely during operation; "Disrev" – Reverse running is forbidden; 2. Display VFD running command channel: "Local" –		

Area	Name	Used to
		Keypad; "Trml" – Terminal; "Remote" - Communication 3. Display current VFD state: "Ready" – The VFD is in stop state (no fault); "Run" – The VFD is in running state; "Jog" – The VFD is in jogging state; "Pre-alarm" – the VFD is under pre-alarm state during running; "Fault" – VFD fault occurred.
Header C	VFD model display area	VFD model display
Display D	Parameter names and function codes on the VFD homepage	Display a maximum of three parameter names and function codes on the homepage. The parameters displayed on the homepage can be managed.
Display E	Values of parameters on the VFD homepage	Display the values of parameters on the VFD homepage, which are updated in real time.
Footer F	Corresponding menus of function keys (4), (5) and (6)	Indicate the menus corresponding to function keys (4), (5) and (6). The corresponding menus of function keys (4), (5) and (6) vary with interfaces, and the content displayed in this area varies also.

5.3 Keypad display

The VFD keypad can display the stopped-state parameters, running-state parameters, and fault alarm status.

5.3.1 Displaying stopped-state parameters

When the VFD is in stopped state, the keypad displays stopped-state parameters, and this interface is the main interface during power-up by default. In stopped state, parameters in various states can be displayed. Press or to shift the displayed parameter up or down.

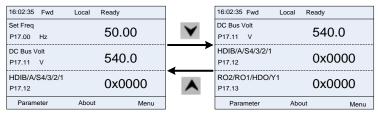


Figure 5-3 Stopped-state parameter display 1

Press or to switch between different display styles, including list display style and progress bar display style.

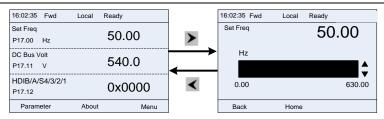


Figure 5-4 Stopped-state parameter display 2

The stopped-state parameter display list is user defined, and each state variable function code can be added to the stopped-state parameter display list as needed. A function code which has been added to the stopped-state parameter display list can also be deleted or shifted.

5.3.2 Displaying running-state parameters

After receiving valid running command, the VFD will enter running state, and the keypad displays running state parameter with RUN indicator on the keypad turning on. In running state, multiple kinds of state parameters can be displayed. Press or to shift up or down.

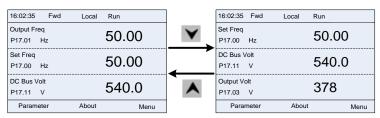


Figure 5-5 Running parameter display state

Press or to switch between different display styles, including list display style and progress bar display style.

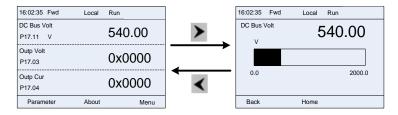


Figure 5-6 Running parameter display state

In running state, multiple kinds of state parameters can be displayed. The running display parameter list is user defined, and each state variable function code can be added to the running display parameter list as needed. A function code which has been added to the running display parameter list can also be deleted or shifted.

5.3.3 Displaying fault information

The VFD enters fault alarm display state once fault signal is detected, and the keypad displays fault code and fault information with the TRIP indicator on the keypad turning on. Fault reset operation can be carried out via the STOP/RST key, control terminal or communication command.

The fault code will be kept displaying until fault is removed.

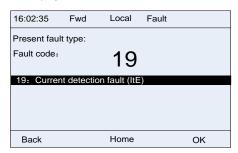


Figure 5-7 Fault alarm display state

5.4 Operating the VFD through the keypad

Various operations can be performed on the VFD, including entering/exiting menus, parameter selection, list modification and parameter addition.

5.4.1 Entering/exiting menus

The keypad displays three main menus at the home interface by default: **Parameter**, **About**, and **Menu**.

Figure 5-8 Menu entering/exiting diagram 1

The following figure shows how to enter the **Menu** main menu and how to operate under this main menu.

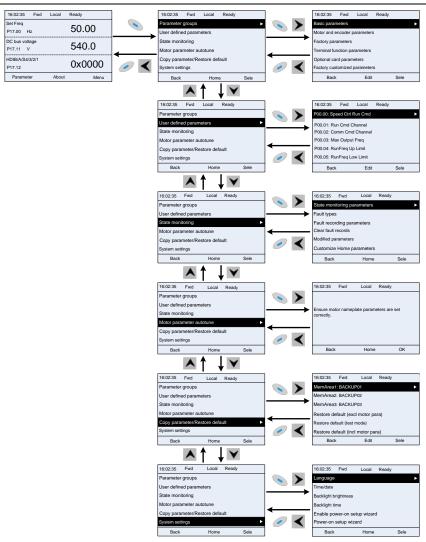


Figure 5-9 Menu entering/exiting diagram 2

The Menu interface contains the following submenus by level.

Level 1	Level 2	Level 3	Level 4
Parameter groups		P00: Basic Function	P00.xx
	Basic	P01: Start/stop control	P01.xx
	parameters	P03: Motor1 Vector Ctrol	P03.xx
		P04: V/F Control	P04.xx

Level 1	Level 2	Level 3	Level 4
		P07: HMI	P07.xx
		P08: Enhanced Function	P08.xx
		P09: PID Control	P09.xx
		P10: PLC&Mul-stepSpCtrl	P10.xx
		P11: Protection Param	P11.xx
		P13: SM Ctrl Param	P13.xx
		P14: Serial Comm Func	P14.xx
		P21: Position Ctrl	P21.xx
		P22: Spdl Positioning	P22.xx
		P23: Motor 2 Vector Ctrl	P23.xx
		P02: Motor 1 Param	P02.xx
	Motor and	P12: Motor 2 Param	P12.xx
	encoder	P20: Motor 1 Encoder	P20.xx
	parameters	P24: Motor 2 Encoder	P24.xx
	Factory parameters	P99: Factory Func	P99.xx
	Terminal	P05: Input Terminals	P05.xx
	function	P06: Output Terminals	P06.xx
	parameters	P98: AIAO Calibration	P98.xx
		P15: Comm Ex-card 1	P15.xx
		P16: Comm Ex-card 2	P16.xx
	0	P25: Ex I/OCard InpFunc	P25.xx
	Optional card parameters	P26: Ex I/OCard OutpFunc	P26.xx
		P27: PLC Func	P27.xx
		P28: Master/slave Ctrl	P28.xx
		P90: Tension control speed mode	P90.xx
	Factory customized	P91: Tension control torque	P91.xx
	parameters	P92: Tension control optimization	P92.xx
User defined parameters	1	1	Pxx.xx

Level 1	Level 2	Level 3	Level 4
		P07: HMI	P07.xx
	State monitoring parameters	P17: State Viewing Func P18: CI-IpCtrlStateView	P17.xx P18.xx
		P19: Ex-card StateView	P19.xx
		P93: Tension control state viewing func	P93.xx
			P07.27: TypeofLatelyFault
			P07.28: Typeof1stLastFault
			P07.29:
	Fault types	1	Typeof2ndLastFault
			P07.30: Typeof3rdLastFault
State monitoring			P07.31: Typeof4thLastFault
			P07.32: Typeof5thLastFault
	Fault recording parameters		P07.33: RunFreq
		/	atLatelyFault
		,	
			P07.xx: xx state of fault xx
	Clear fault records	1	Sure to clear fault records?
			Pxx.xx: Modified parameter 1
	Modified	,	Pxx.xx: Modified parameter
	parameters	/	2
			Pxx.xx: Modified parameter
			xx
	Customize	Stopped-state parameters	I
	Home parameters	Running-state parameters	1
			Complete para rotary
		Ensure motor nameplate	autotune
Motor parameter	,	parameters are set	Complete para static
autotune	'	correctly.	autotune
		сопесну.	Partial para static autotune
			Complete para rotary

Level 1	Level 2	Level 3	Level 4
			autotune 2 (for AM)
			Partial para static autotune
			2 (for AM)
			Upload local func para to
			keypad
			Download all func para
		MemArea1: BACKUP01	from keypad
		Memarea I. BACKUPU I	Download NonMotor func
			para from keypad
			Download motor func para
			from keypad
			Upload local func para to
			keypad
			Download all func para
		MemArea2: BACKUP012	from keypad
Сору		Memareaz. BACKOFU12	Download NonMotor func
	,		para from keypad
parameter/Restore			Download motor func para
default	,		from keypad
doladit		MemArea3: BACKUP03	Upload local func para to
			keypad
			Download all func para
			from keypad
			Download NonMotor func
			para from keypad
			Download motor func para
			from keypad
		Restore default (excl	Sure to restore defaults
		motor para)	(excl motor para)?
		Restore default (test	Sure to restore default (test
		mode)	mode)?
		Restore default (incl motor	Sure to restore default (incl
		para)	motor para)?
			Language
System settings			Time/date
	/	l l	Backlight brightness
,			Backlight time
			Enable power-on setup
			wizard

Level 1	Level 2	Level 3	Level 4	
			Power-on setup wizard	
			Keypad programming	
			Fault time setting	
			Control board programming	
			Up/Down key sensitivity	

5.4.2 Editing a parameter list

list is the list edited. If

The parameters in the parameter list in stopped state can be added as needed (through the menu of user defined home parameters), and the list can also be edited such as "Move up", "Move down", "Delete from the list", and "Restore default". The edit function is shown in the following.

Figure 5-10 List edit diagram 1

key to enter edit interface, select the operation needed, and press key.

key to confirm the edit operation and return to the previous menu (parameter list), the returned key or key is pressed in edit interface without selecting

edit operation, it will return to the previous menu (parameter list remain unchanged).

Note: For the parameter objects in the list header, move-up operation will be invalid, and the same principle can be applied to the parameter objects in the list footer; after deleting a certain parameter, the parameter objects under it will be moved up automatically.

The items in the parameter list in running state can be added as needed (through the menu of user defined home parameters), and the list can also be edited such as "Move up", "Move down", "Delete from the list", and "Restore default parameters". The edit function is shown in the interface below.

Figure 5-11 List edit diagram 2

The parameters of user defined parameter setting can be added, deleted or adjusted as needed, such as "Move up", "Move down", "Delete from the list", and "Restore default parameters"; the adding function can be set in a certain function code in a function group. The edit function is shown in the figure below.

Figure 5-12 List edit diagram 3

5.4.3 Adding parameters to the parameter list displayed in stopped/running state

You can choose **Menu** > **State monitoring**, choose a submenu, enter a specific function group and then a specific function code to add the parameter to the list of parameters displayed in stopped state or parameters displayed in running state.

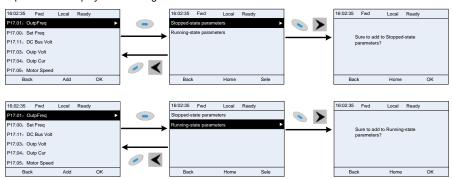


Figure 5-13 Adding parameter diagram 1

After selecting a specific function code, press key to enter the parameter addition interface, and then press key, key or key to confirm the addition operation. If this parameter is not included in the list of parameters displayed in stopped state or parameters displayed in running state, the parameter added will be at the end of the list; if the parameter is already in the list of parameters displayed in stopped state or parameters displayed in running state, the addition operation will be invalid. If key or key is pressed without any selection in the addition interface, it will return to the previous menu.

Part of the monitoring parameters in P07 HMI group can be added to the list of parameters displayed in stopped state or parameters displayed in running state. All the parameters in P17, P18 and P19 group can be added to the list of parameters displayed in stopped state or parameters displayed in running state.

Up to 16 monitoring parameters can be added to the list of parameters displayed in stopped state; and up to 32 monitoring parameters can be added to the list of parameters displayed in running state.

5.4.4 Adding parameters to the user defined parameter list

You can choose **Menu > Parameter groups**, choose a submenu, and enter a specific function group

and then a specific function code to add the parameter to the user defined parameter list.

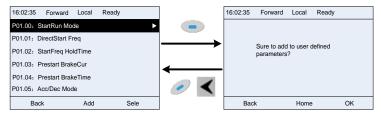


Figure 5-14 Adding parameter diagram 2

Press the key to enter the addition interface, and press key, key or key to confirm the addition operation. If this parameter is not included in the original user defined parameter list, the newly-added parameter will be at the end of the list; if this parameter is already in the list, the addition operation will be invalid. If key or key or key is pressed without any selection, it will return to the previous menu.

All the function code groups under the parameter group menu can be added to the user defined parameter list. Up to 64 function codes can be added to the user defined parameter list.

5.4.5 Editing user defined parameters

After accessing a specific function code under the **User defined parameters** menu, you can press the key, key or key to enter parameter selection edit interface. After entering the edit interface, the present value will be highlighted. Press key and key to edit current parameter value, and the corresponding parameter item of the value will be highlighted automatically. After parameter selection is done, press key or key to save the selected parameter and return to the previous menu. In parameter selection edit interface, press key to maintain the parameter value and return to the previous menu.

Figure 5-15 Editing user defined parameters

In parameter selection edit interface, the "Auth" field on the top right indicates whether this parameter is editable or not.

[&]quot; \ " indicates the set value of this parameter can be modified under the present state.

[&]quot;x" indicates the set value of this parameter cannot be modified under the present state.

5.4.6 Editing parameters in parameter groups

You can choose **Menu** > **Parameter groups**, enter a specific function group and then a specific function code, and then press key, key or key to enter the parameter setting interface. After entering the edit interface, set the parameter from the low bit to high bit, and the bit under setting will be highlighted. Press key or key to increase or decrease the parameter value (this operation is valid until the parameter value exceeds the max. value or min. value); press or b to shift the edit bit. After the parameter is set, press key or key to save the setting and return to the previous menu; press to maintain the original parameter value and return to the previous menu.

Figure 5-16 Editing parameters in parameter groups

In the parameter edit interface, the "Auth" field on the top right indicates whether this parameter can be modified or not.

5.4.7 Monitoring states

You can choose **Menu** > **State monitoring** > **State monitoring parameter**, enter a specific function group and then a specific function code, and press key, key or key to enter the state monitoring interface. After entering the state monitoring interface, the actual parameter value will be displayed in real time, this value is the actually detected value which cannot be modified. In the state monitoring interface, you can press key or key to return to the previous menu.

n the state monitoring interface, you can press 💮 Key or 💉 Key to return to the previous menu

[&]quot;Present" indicates the present value.

[&]quot;Default" indicates the default value of this parameter.

[&]quot; \rightarrow" indicates the set value of this parameter can be modified under the present state.

[&]quot;x" indicates the set value of this parameter cannot be modified under the present state.

[&]quot;Present" indicates the present value.

[&]quot;Default" indicates the default value of this parameter.

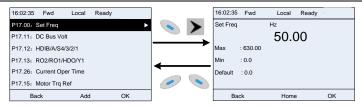


Figure 5-17 State monitoring interface

5.4.8 Autotuning motor parameters

You can choose **Menu > Motor parameter autotune** and press enter motor parameter autotuning interface, however, before entering motor parameter autotuning interface, you must set the motor nameplate parameters correctly. After entering the interface, select motor autotuning type to carry out motor parameter autotuning. In motor parameter autotuning

interface, you can press key or key to return to the previous menu.

Figure 5-18 Selecting a parameter autotuning type.

After selecting a motor autotuning type, enter the motor parameter autotuning interface, and press RUN key to start motor parameter autotuning. After autotuning is done, a message will pop out indicating autotuning is successful, and then it will return to the main interface of stop. During autotuning, you can press STOP/RST key to terminate autotuning; if any fault occurs during autotuning, the keypad will display a fault interface.

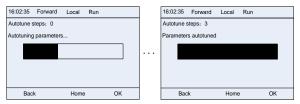


Figure 5-19 Parameter autotuning

5.4.9 Backing up parameters

You can choose Menu > Copy parameter/Restore default, and press

key, key or

key to enter function parameter backup interface and function parameter restoration setting interface to upload/download VFD parameters or restore VFD parameters to default value. The keypad has three different storage areas for parameter backup, and each storage area can save the parameters of one VFD, which means the keypad can save parameters of three VFD in total.

Figure 5-20 Parameter backup

5.4.10 System settings

You can choose Menu > System settings, and press \(\sum \) key, \(\rightarrow \) key or \(\overline{\cutee{\cute{\cute{\cute{\cute\cute

system setting interface to set the keypad language, time/date, backlight brightness, backlight time and restore parameters.

Note: Clock battery is not included, and the keypad time/date needs to be reset after power off. If timekeeping after power off is needed, you need to purchase the clock batteries separately.

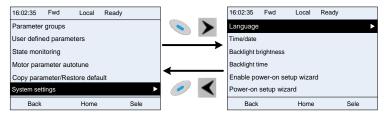
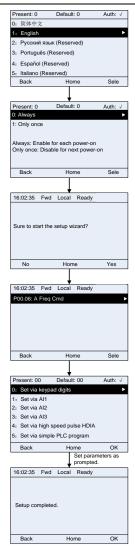



Figure 5-21 System settings

5.4.11 Power-on setup wizard

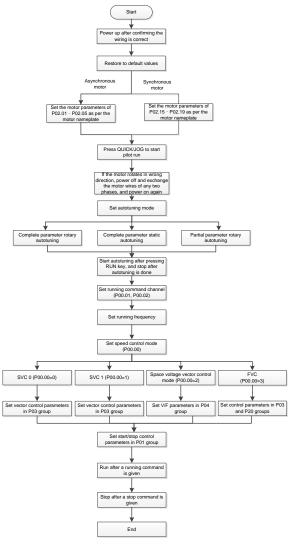
The keypad supports the power-on setup wizard function, mainly for the first power-on situation, instructing you to enter the setting menu, and gradually implementing basic functions such as basic parameter setting, direction judgment, mode setting and autotuning.

For first power-on, the keypad automatically enters the setup wizard interface. See the following.

If you want to change the wizard settings, you can **Menu** > **System settings**, and then choose **Enable power-on setup wizard** or **Power-on setup wizard**, and then make changes.

5.5 Basic operation instruction

5.5.1 What this section contains


This section introduces the function modules inside the VFD.

- Ensure all the terminals are fixed and tightened firmly.
 - ♦ Ensure the motor matches with the VFD power.

5.5.2 Common commissioning procedure

The common operation procedure is as follows (taking motor 1 as an example).

Note: If fault occurred, rule out the fault cause according to 7 Troubleshooting.

The running command channel can be set by terminal commands besides P00.01 and P00.02.

Current running command channel P00.01	function 36	Multifunction terminal function 37 Command switched to terminal	Multifunction terminal function 38 Command switched to communication
Keypad	1	Terminal	Communication

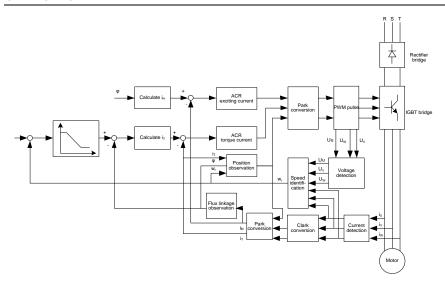
Current running command channel P00.01	function 36	Multifunction terminal function 37 Command switched to terminal	Multifunction terminal function 38 Command switched to communication
Terminal	Keypad	1	Communication
Communication	Keypad	Terminal	1

Note: "/" means this multifunction terminal is invalid under current reference channel.

Related parameter list:

Function code	Name	Detailed parameter description	Default value
P00.00	Speed control mode	0: SVC 0 1: SVC 1 2: SVPWM 3: FVC Note: If 0, 1 or 3 is selected, it is required to carry out motor parameter autotuning first. 0: Keypad	2
P00.01	Running command channel	1: Terminal 2: Communication	0
P00.02	Communication running command channel	0: Modbus/Modbus TCP 1: CANopen 2: Ethernet 3: EtherCAT/PROFINET/EtherNet IP 4: Programmable card 5: Wireless communication card	0
P00.15	Motor parameter autotuning	O: No operation 1: Complete rotary parameter autotuning 2: Complete static parameter autotuning 3: Partial static parameter autotuning 4: Complete rotary parameter autotuning 2 (for asynchronous motors) 5: Partial static parameter autotuning 2 (for asynchronous motors)	0
P00.18	Function parameter restoration	O: No operation 1: Restore default values (excluding motor parameters) 2: Clear fault records 3: Lock keypad parameters 4: Reserved	0

Function code	Name	Detailed parameter description	Default value
		5: Restore default values (for factory test	
		mode)	
		6: Restore default values (including motor	
		parameters)	
		Note: After the selected operation is done,	
		this parameter is automatically restored to 0.	
		Restoring the default values may delete the	
		user password. Exercise caution when using	
		this function. The option 5 can be used only	
		for factory testing.	
P02.00	Type of motor 1	0: Asynchronous motor	0
	Poted newer of	1: Synchronous motor	Donondo
P02.01	Rated power of asynchronous motor 1	0.1–3000.0kW	Depends on model
	Rated frequency of		on model
P02.02	asynchronous motor 1	0.01Hz-P00.03 (Max. output frequency)	60.00Hz
	Rated speed of		
P02.03	asynchronous motor 1	1–60000rpm	1700rpm
	Rated voltage of		Depends
P02.04	asynchronous motor 1	0–1200V	on model
	Rated current of		Depends
P02.05	asynchronous motor 1	0.8-6000.0A	on model
	Rated power of		Depends
P02.15	synchronous motor 1	0.1–3000.0kW	on model
	Rated frequency of		
P02.16	synchronous motor 1	0.01Hz–P00.03 (Max. output frequency)	60.00Hz
D00 17	Number of pole pairs of		
P02.17	synchronous motor 1	1–50	2
D00.40	Rated voltage of	0.40001/	Depends
P02.18	synchronous motor 1	0–1200V	on model
D00.40	Rated current of	0.0.000.04	Depends
P02.19	synchronous motor 1	0.8–6000.0A	on model
P05.01-	Function of multifunction	36: Command switches to keypad	
P05.01-	digital input terminal	37: Command switches to terminal	1
F05.00	(S1-S4, HDIA, HDIB)	38: Command switches to communication	
P07.01	Reserved	I	/
P07.02	QUICK/JOG key	Range: 0x00-0x27	0x01
1 07.02	function	Ones: QUICK/JOG key function selection	


Function code	Name	Detailed parameter description	Default value
		0: No function	
		1: Jogging	
		2: Reserved	
		3: Switching between forward/reverse	
		rotation	
		4: Clear UP/DOWN setting	
		5: Coast to stop	
		6: Switch running command reference mode	
		by sequence	
		7: Reserved	
		Tens: Reserved	

5.5.3 Vector control

Asynchronous motors are featured with high order, non-linear, strong coupling, and multi-variables, which makes it very difficult to control asynchronous motors during actual application. The vector control theory aims to solve this problem through measuring and controlling the stator current vector of asynchronous motor, and decomposing the stator current vector into exciting current (current component which generates internal magnet field) and torque current (current component which generates torque) based on field orientation principle, and then controlling the amplitude value and phase position of these two components (namely, control the stator current vector of motor) to realize decoupling control of exciting current and torque current, thus achieving high-performance speed regulation of asynchronous motor.

The UMI-B7 series VFD carries a built-in speed sensor-less vector control algorithm, which can be used to drive the asynchronous motor and permanent-magnet synchronous motor simultaneously. As the core algorithm of vector control is based on accurate motor parameter model, the accuracy of motor parameters will impact the control performance of vector control. It is recommended to input accurate motor parameters and carry out motor parameter autotuning before vector operation.

As vector control algorithm is complicated, you should be cautious of regulation on dedicated function parameters of vector control.

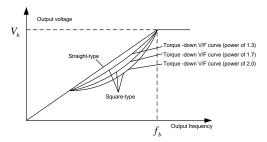
Function code	Name	Detailed parameter description	Default value
		0: SVC 0	
		1: SVC 1	
		2: SVPWM	
P00.00	Speed control mode	3: FVC	2
		Note: If 0, 1 or 3 is selected, it is required	
		to carry out motor parameter autotuning	
		first.	
	Motor parameter autotuning	0: No operation	
		1: Complete rotary parameter autotuning	
		2: Complete static parameter autotuning	
P00.15		3: Partial static parameter autotuning	0
P00.15		4: Complete rotary parameter autotuning 2	
		(for asynchronous motors)	
		5: Partial static parameter autotuning 2 (for	
		asynchronous motors)	
P02.00	Type of motor 1	0: Asynchronous motor	0
P02.00	Type of motor 1	1: Synchronous motor	U
P03.00	Speed loop proportional gain 1	0–200.0	20.0
P03.01	Speed loop integral time 1	0.000-10.000s	0.200s

Function code	Name	Detailed parameter description	Default value
P03.02	Switching low point frequency	0.00Hz-P03.05	5.00Hz
P03.03	Speed loop proportional gain 2	0–200.0	20.0
P03.04	Speed loop integral time 2	0.000-10.000s	0.200s
P03.05	Switching high point frequency	P03.02-P00.03 (Max. output frequency)	10.00Hz
P03.06	Speed loop output filter	0-8 (corresponds to 0-28/10ms)	0
P03.07	Electromotion slip compensation coefficient of vector control	50%–200%	100%
P03.08	Brake slip compensation coefficient of vector control	50%–200%	100%
P03.09	Current loop proportional coefficient P	0–65535	1000
P03.10	Current loop integral coefficient I	0–65535	1000
P03.11	Torque setting source selection	0: Keypad (P03.12) 1: Keypad (P03.12) 2: Al1 3: Al2 4: Al3 5: Pulse frequency HDIA 6: Multi-step torque 7: Modbus/Modbus TCP communication 8: CANopen communication 9: Ethernet communication 10: Pulse frequency HDIB 11: EtherCAT/PROFINET/EtherNet IP communication 12: Programmable card Note: For these settings, 100% corresponds to the motor rated current.	0
P03.12	Torque set through keypad	-300.0%–300.0% (of the motor rated current)	50.0%
P03.13	Torque reference filter time	0.000-10.000s	0.010s

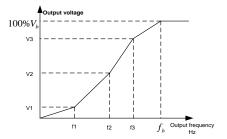
Function	Name	Detailed parameter description	Default
code		0.14 1/200.10)	value
		0: Keypad (P03.16)	1
		1: Al1	
		2: Al2	
		3: Al3	
		4: Pulse frequency HDIA	
		5: Multi-step setting	
	Setting source of FWD	6: Modbus/Modbus TCP communication	
P03.14	rotation frequency upper	7: CANopen communication	0
	limit in torque control	8: Ethernet communication	
		9: Pulse frequency HDIB	
		10: EtherCAT/PROFINET/EtherNet IP	
		communication	
		11: Programmable card	
		12: Reserved	
		Note: For these settings, 100%	
	0.00	corresponds to the max. frequency.	
Baa 45	Setting source of REV	0: Keypad (P03.17)	
P03.15	rotation frequency upper	1–11: the same as P03.14	0
	limit in torque control		
D00.40	FWD rotation frequency		00.0011
P03.16	upper limit set through	N. I	60.00Hz
	keypad in torque control	Value range: 0.00 Hz–P00.03 (Max. output	
D00.47	REV rotation frequency	frequency)	00 001 1-
P03.17	upper limit set through		60.00Hz
	keypad in torque control	O. Kaymad (DO2 20)	
		0: Keypad (P03.20) 1: Al1	
		2: AI2	
		3: Al3	
		4: Pulse frequency HDIA	
	Sotting course of	5: Modbus/Modbus TCP communication	
P03.18	Setting source of		0
P03.16	electromotive torque upper limit	7: Ethernet communication	U
	IIIIIL	8: Pulse frequency HDIB	
		9: EtherCAT/PROFINET/EtherNet IP	
		communication	
		10: PLC	
		11: Reserved	

Function code	Name	Detailed parameter description	Default value	
		Note: For these settings, 100%		
		corresponds to the rated motor current.		
P03.19	Setting source of braking	0: Keypad (P03.21)	0	
P03.19	torque upper limit	1–10: the same as P03.18	U	
P03.20	Electromotive torque upper		180.0%	
P03.20	limit set through keypad	0.0. 200.0% (of the motor rated current)		
P03.21	Braking torque upper limit	0.0–300.0% (of the motor rated current)	180.0%	
F03.21	set through keypad		100.076	
P03.22	Flux-weakening coefficient in constant power area	0.1–2.0	0.3	
	Min. flux-weakening point	400/ 4000/		
P03.23	in constant power area	10%–100%	20%	
P03.24	Max. voltage limit	0.0–120.0%	100.0%	
P03.25	Pre-exciting time	0.000-10.000s	0.300s	
D00.00	For a billion of a new constant	0: Disable	0	
P03.32	Enabling torque control	1: Enable	0	
P03.33	Flux weakening integral gain	0–8000	1200	
		Ones place: Torque command selection		
		0: Torque reference		
		1: Torque current reference		
		Tens place: Reserved		
		0: Reserved		
		1: Reserved		
P03.35	Control optimization setting	Hundreds place: Whether to enable ASR	0x0000	
	gorinoi opiiiii.	integral separation	one occ	
		0: Disable		
		1: Enable		
		Thousands place: Reserved		
		0: Reserved		
		1: Reserved		
D00.00	AOD -1:#ti-1 - '	Range: 0x0000–0x1111	0.00-	
P03.36	ASR differential gain	0.00–10.00s	0.00s	
P03.37	High-frequency ACR	In FVC (P00.00=3), when the frequency is	1000	
	proportional coefficient	lower than the ACR high-frequency		
P03.38	High-frequency ACR	switching threshold (P03.39), the ACR PI parameters are P03.09 and P03.10; and	1000	
	integral coefficient	parameters are FUS.US and FUS. 10, and		

Function code	Name	Detailed parameter description	Default value
P03.39	ACR high frequency switching threshold	when the frequency is higher than the ACR high-frequency switching threshold (P03.39), the ACR PI parameters are P03.37 and P03.38. Setting range of P03.37: 0–65535 Setting range of P03.38: 0–65535 Setting range of P03.39: 0.0–100.0% (in relative to the maximum frequency)	100.0%
P17.32	Flux linkage	0.0–200.0%	0.0%


5.5.4 SVPWM control mode

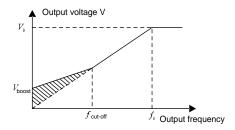
UMI-B7 VFD also carries built-in SVPWM control function. SVPWM mode can be used in cases where mediocre control precision is enough. In cases where a VFD needs to drive multiple motors, it is also recommended to adopt SVPWM control mode.


UMI-B7 VFD provides multiple kinds of V/F curve modes to meet different field needs. You can select corresponding V/F curve or set the V/F curve as needed.

Suggestions:

- 1. For the load featuring constant moment, such as conveyor belt which runs in straight line, as the moment should be constant during the whole running process, it is recommended to adopt straight-type V/F curve.
- 2. For the load featuring decreasing moment, such as fan and water pump, as the relation between its actual torque and speed is squared or cubed, it is recommended to adopt the V/F curve corresponds to power of 1.3, 1.7 or 2.0.

UMI-B7 VFD also provides multi-point V/F curve. You can alter the V/F curve output by VFD through setting the voltage and frequency of the three points in the middle. The whole curve consists of five points starting from (0Hz, 0V) and ending in (fundamental motor frequency, rated motor voltage). During setting, it is required that $0 \le f1 \le f2 \le f3 \le f$ undamental motor frequency, and $0 \le V1 \le V2 \le V3 \le f$ motor voltage.


UMI-B7 VFD provides dedicated function codes for SVPWM control mode. You can improve the performance of SVPWM through settings.

Torque boost

Torque boost function can effectively compensate for the low-speed torque performance during SVPWM control. Automatic torque boost has been set by default to enable the VFD to adjust the torque boost value based on actual load conditions.

Note:

- (1) Torque boost is effective only under torque boost cut-off frequency.
- (2) If the torque boost is too large, low-frequency vibration or overcurrent may occur to the motor, if such situation occurs, lower the torque boost value.

2. Energy-saving run

During actual running, the VFD can search for the maximum efficiency point to keep running in the most efficient state to save energy.

Note:

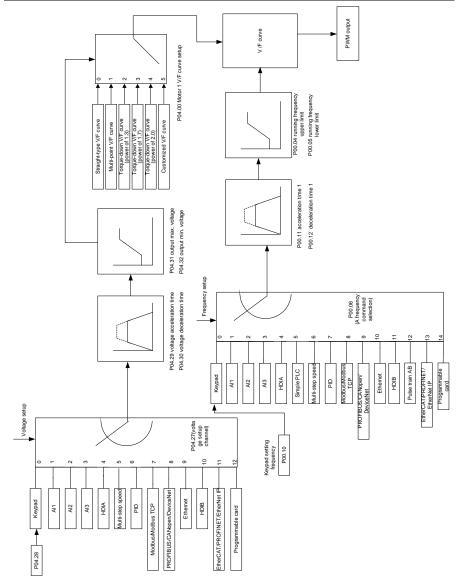
- (1) This function is generally used in light load or no-load cases.
- (2) This function does not fit in cases where load transient is required.
- 3. V/F slip compensation gain

SVPWM control belongs to open-loop mode, which will cause motor speed to fluctuate when motor load transients. In cases where strict speed requirement is needed, you can set the slip compensation gain to compensate for the speed variation caused by load fluctuation through internal output adjustment of VFD.

The set range of slip compensation gain is 0–200%, in which 100% corresponds to rated slip frequency.

Note: Rated slip frequency= (Rated synchronous speed of motor - Rated speed of motor) × Number of motor pole pairs/60

4. Oscillation control


Motor oscillation often occurs in SVPWM control in large-power drive applications. To solve this problem, the UMI-B7 series VFD sets two function codes to control the oscillation factor, and you can set the corresponding function code based on the occurrence frequency of oscillation.

Note: The larger the set value, the better the control effect, however, if the set value is too large, it may easily lead to too large VFD output current.

5. Asynchronous motor IF control

Generally, the IF control mode is valid for asynchronous motors. It can be used for a synchronous motor only when the frequency of the synchronous motor is extremely low. Therefore, the IF control described in this manual is only involved with asynchronous motors. IF control is implemented by performing closed-loop control on the total output current of the VFD. The output voltage adapts to the current reference, and open-loop control is separately performed over the frequency of the voltage and current.

Customized V/F curve (V/F separation) function:

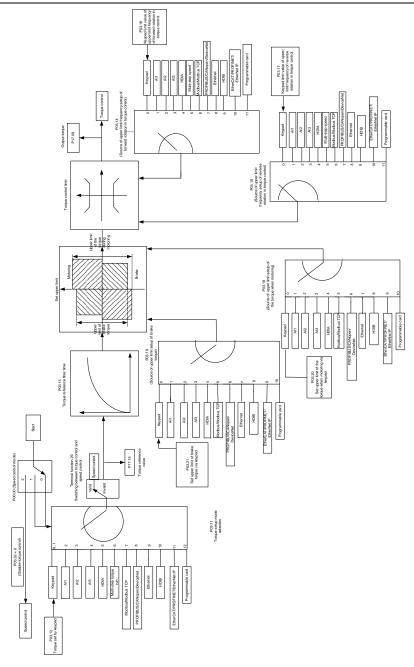
When selecting customized V/F curve function, you can set the reference channels and acceleration/deceleration time of voltage and frequency respectively, which will form a real-time V/F curve through combination.

Note: This kind of V/F curve separation can be applied in various frequency-conversion power sources, however, you should be cautious of parameter setting as improper setting may damage the machine.

Function code	Name	Detailed parameter description	Default value
P00.00	Speed control mode	0: SVC 0 1: SVC 1 2: SVPWM 3: FVC Note: If 0, 1 or 3 is selected, it is required to carry out motor parameter autotuning first.	2
P00.03	Max. output frequency	Max.(P00.04, 10.00) – 630.00Hz	60.00Hz
P00.04	Upper limit of running frequency	P00.05–P00.03	60.00Hz
P00.05	Lower limit of running frequency	0.00Hz-P00.04	0.00Hz
P00.11	Acceleration time 1	0.0–3600.0s	Depends on model
P00.12	Deceleration time 1	0.0–3600.0s	Depends on model
P02.00	Type of motor 1	Asynchronous motor Synchronous motor	0
P02.02	Rated power of asynchronous motor	0.01Hz–P00.03 (Max. output frequency)	60.00Hz
P02.04	Rated voltage of asynchronous motor	0–1200V	Depends on model
P04.00	V/F curve setting of motor 1	0: Straight-type V/F curve 1: Multi-point V/F curve 2: Torque-down V/F curve (power of 1.3) 3: Torque-down V/F curve (power of 1.7) 4: Torque-down V/F curve (power of 2.0) 5: Customized V/F (V/F separation)	0
P04.01	Torque boost of motor	0.0%: (automatic); 0.1%–10.0%	0.0%
P04.02	Motor 1 torque boost cut-off	0.0%–50.0% (rated frequency of motor 1)	20.0%
P04.03	V/F frequency point 1 of motor 1	0.00Hz-P04.05	0.00Hz
P04.04	V/F voltage point 1 of motor 1	0.0%–110.0%	0.0%

Function code	Name	Detailed parameter description	Default value
P04.05	V/F frequency point 2 of motor 1	P04.03–P04.07	0.00Hz
P04.06	V/F voltage point 2 of motor 1	0.0%–110.0%	0.0%
P04.07	V/F frequency point 3 of motor 1	P04.05–P02.02 or P04.05–P02.16	0.00Hz
P04.08	V/F voltage point 3 of motor 1	0.0%–110.0%	0.0%
P04.09	V/F slip compensation gain of motor 1	0.0–200.0%	100.0%
P04.10	Low-frequency oscillation control factor of motor 1	0–100	10
P04.11	High-frequency oscillation control factor of motor 1	0–100	10
P04.12	Oscillation control threshold of motor 1	0.00Hz-P00.03 (Max. output frequency)	30.00Hz
P04.13	V/F curve setting of motor 2	O: Straight V/F curve 1: Multi-point V/F curve 2: Torque-down V/F curve (power of 1.3) 3: Torque-down V/F curve (power of 1.7) 4: Torque-down V/F curve (power of 2.0) 5: Customize V/F (V/F separation)	0
P04.14	Torque boost of motor 2	0.0%: (automatic); 0.1%–10.0%	0.0%
P04.15	Torque boost cut-off of motor 2	0.0%–50.0% (rated frequency of motor 1)	20.0%
P04.16	V/F frequency point 1 of motor 2	0.00Hz-P04.18	0.00Hz
P04.17	V/F voltage point 1 of motor 2	0.0%–110.0%	0.0%
P04.18	V/F frequency point 2 of motor 2	P04.16–P04.20	0.00Hz
P04.19	V/F voltage point 2 of motor 2	0.0%–110.0%	0.0%
P04.20	V/F frequency point 3 of motor 2	P04.18–P02.02 or P04.18–P02.16	0.00Hz

Function code	Name	Detailed parameter description	Default value
P04.21	V/F voltage point 3 of motor 2	0.0%–110.0%	0.0%
P04.22	V/F slip compensation gain of motor 2	0.0–200.0%	100.0%
P04.23	Low-frequency oscillation control factor of motor 2	0–100	10
P04.24	High-frequency oscillation control factor of motor 2	0–100	10
P04.25	Oscillation control threshold of motor 2	0.00Hz–P00.03 (Max. output frequency)	30.00Hz
P04.26	Energy-saving run	0: No 1: Automatic energy-saving run	0
P04.27	Channel of voltage setting	0: Keypad; output voltage is determined by P04.28 1: Al1 2: Al2 3: Al3 4: HDIA 5: Multi-step 6: PID 7: Modbus/Modbus TCP communication 8: CANopen communication 9: Ethernet communication 10: HDIB 11: EtherCAT/PROFINET/EtherNet IP 12: Programmable card 13: Reserved	0
P04.28	Set voltage value via keypad	0.0%–100.0% (of rated motor voltage)	100.0%
P04.29	Voltage increase time	0.0–3600.0s	5.0s
P04.30	Voltage decrease time	0.0–3600.0s	
P04.31	Output max. voltage	P04.32–100.0% (of rated motor voltage)	100.0%
P04.32	Output min. voltage	n. voltage 0.0%–P04.31 (rated motor voltage)	
P04.33	Flux-weakening coefficient in the constant power zone	1.00–1.30	1.00


Function code	Name	Detailed parameter description	Default value
P04.34	Pull-in current 1 in synchronous motor VF control	When the synchronous motor VF control mode is enabled, this parameter is used to set the reactive current of the motor when the output frequency is lower than the frequency set in P04.36. Setting range: -100.0%—+100.0% (of the rated current of the motor)	20.0%
P04.35	Pull-in current 2 in synchronous motor VF control	When the synchronous motor VF control mode is enabled, this parameter is used to set the reactive current of the motor when the output frequency is higher than the frequency set in P04.36. Setting range: -100.0%—+100.0% (of the rated current of the motor)	10.0%
P04.36	Frequency threshold for pull-in current switching in synchronous motor VF control	When the synchronous motor VF control mode is enabled, this parameter is used to set the frequency threshold for the switching between pull-in current 1 and pull-in current 2. Setting range: 0.0%–200.0% (of the motor rated frequency	20.0%
P04.37	Reactive current closed-loop proportional coefficient in synchronous motor VF control	When the synchronous motor VF control mode is enabled, this parameter is used to set the proportional coefficient of the reactive current closed-loop control. Setting range: 0–3000	50
P04.38	Reactive current closed-loop integral time in synchronous motor VF control	When the synchronous motor VF control mode is enabled, this parameter is used to set the integral coefficient of the reactive current closed-loop control. Setting range: 0–3000	30
P04.39	Reactive current closed-loop output limit in synchronous motor VF control	When the synchronous motor VF control mode is enabled, this parameter is used to set the output limit of the reactive current closed-loop control. A greater value indicates a higher reactive closed-loop compensation voltage and higher output power of the motor. In general, you do not need to modify this parameter. Setting range: 0–16000	8000
P04.40	Enable/disable IF mode for	0: Disabled 1: Enabled	0

Function code	Name	Detailed parameter description	Default value
	asynchronous motor		
P04.41	Current setting in IF mode for asynchronous motor 1	When IF control is adopted for asynchronous motor 1, this parameter is used to set the output current. The value is a percentage relative to the rated current of the motor. Setting range: 0.0–200.0%	120.0%
P04.42	Proportional coefficient in IF mode for asynchronous motor 1	When IF control is adopted for asynchronous motor 1, this parameter is used to set the proportional coefficient of the output current closed-loop control. Setting range: 0–5000	350
P04.43	Integral coefficient in IF mode for asynchronous motor 1	When IF control is adopted for asynchronous motor 1, this parameter is used to set the integral coefficient of the output current closed-loop control. Setting range: 0–5000	150
P04.44	Starting frequency point for switching off IF mode for asynchronous motor	Setting range: 0.00–P04.50	10.00Hz
P04.45	Enable/disable IF mode for asynchronous motor 2	0: Disabled 1: Enabled	0
P04.46	Current setting in IF mode for asynchronous motor 2	When IF control is adopted for asynchronous motor 2, this parameter is used to set the output current. The value is a percentage relative to the rated current of the motor. Setting range: 0.0–200.0%	120.0%
P04.47	Proportional coefficient in IF mode for asynchronous motor 2	When IF control is adopted for asynchronous motor 2, this parameter is used to set the proportional coefficient of the output current closed-loop control. Setting range: 0–5000	350
P04.48	Integral coefficient in IF mode for asynchronous motor 2	When IF control is adopted for asynchronous motor 2, this parameter is used to set the integral coefficient of the output current closed-loop control. Setting range: 0–5000	150
P04.49	Starting frequency point for switching off	Setting range: 0.00–P04.51	10.00Hz

Function code	Name	Detailed parameter description	Default value
	IF mode for asynchronous motor 2		
P04.50	End frequency point for switching off IF mode for asynchronous motor	P04.44-P00.03	25.00Hz
P04.51	End frequency point for switching off IF mode for asynchronous motor 2	P04.49-P00.03	25.00Hz

5.5.5 Torque control

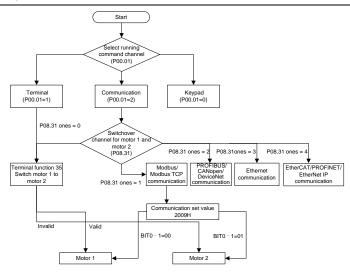
The UMI-B7 VFD supports torque control and speed control. Speed control mode aims to stabilize the speed to keep the set speed consistent with the actual running speed. Meanwhile, the max. load-carrying capacity is restricted by torque limit. Torque control mode aims to stabilize the torque to keep the set torque consistent with the actual output torque, meanwhile, the output frequency is restricted by upper/lower limit.

Function code	Name	Detailed parameter description	Default value
P00.00	Speed control mode	0: SVC 0 1: SVC 1 2: SVPWM 3: FVC Note: If 0, 1 or 3 is selected, it is required to carry out motor parameter autotuning first.	2
P03.32	Enabling torque control	0: Disable 1: Enable	0
P03.11 Torque setting mode selection		0: Keypad (P03.12) 1: Keypad (P03.12) 2: Al1 3: Al2 4: Al3 5: Pulse frequency HDIA 6: Multi-step torque 7: Modbus/Modbus TCP communication 8: CANopen communication 9: Ethernet communication 10: Pulse frequency HDIB 11: EtherCAT/PROFINET/EtherNet IP communication 12: Programmable card Note: For these settings, 100% corresponds to the motor rated current.	0
P03.12	Torque set through keypad	-300.0%–300.0% (of the motor rated current)	50.0%
P03.13	Torque reference filter time	0.000–10.000s	0.010s
P03.14	Setting source of FWD rotation frequency upper limit in torque control	0: Keypad (P03.16) 1: Al1 2: Al2 3: Al3 4: Pulse frequency HDIA 5: Multi-step setting 6: Modbus/Modbus TCP communication 7: CANopen communication 8: Ethernet communication 9: Pulse frequency HDIB	0

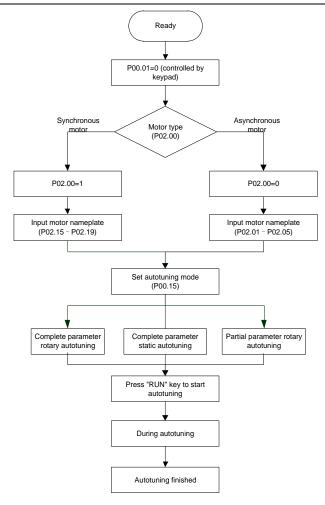
Function code	Name	Detailed parameter description	Default value
		10: EtherCAT/PROFINET/EtherNet IP communication 11: Programmable card 12: Reserved Note: For these settings, 100% corresponds to the max. frequency.	
P03.15	Setting source of REV rotation frequency upper limit in torque control	0: Keypad (P03.17) 1: Al1 2: Al2 3: Al3 4: Pulse frequency HDIA 5: Multi-step setting 6: Modbus/Modbus TCP communication 7: CANopen communication 8: Ethernet communication 9: Pulse frequency HDIB 10: EtherCAT/PROFINET/EtherNet IP communication 11: Programmable card 12: Reserved Note: For these settings, 100% corresponds to the max. frequency.	0
P03.16	FWD rotation frequency upper limit set through keypad in torque control	0.00Hz–P00.03 (Max. output frequency)	60.00 Hz
P03.17	REV rotation frequency upper limit set through keypad in torque control	0.00Hz–P00.03 (Max. output frequency)	60.00 Hz
P03.18	Setting source of electromotive torque upper limit	0: Keypad (P03.20) 1: Al1 2: Al2 3: Al3 4: Pulse frequency HDIA 5: Modbus/Modbus TCP communication 6: CANopen communication	0

Function code	Name	Detailed parameter description	Default value
		7: Ethernet communication	
		8: Pulse frequency HDIB	
		9: EtherCAT/PROFINET/EtherNet IP	
		communication	
		10: PLC	
		11: Reserved	
		Note: For these settings, 100% corresponds to	
		the rated motor current.	
	0-46	0: Keypad (P03.21)	
D00.40	Setting source of braking torque upper limit	1–11: Same as those for P03.18	0
P03.19		Note: For these settings, 100% corresponds to	
		the rated motor current.	
P03.20	Electromotive torque upper limit set through keypad	0.0–300.0% (of rated motor current)	180.0%
P03.21	Braking torque upper limit set	0.0–300.0% (of rated motor current)	180.0%
	through keypad		
P17.09	Motor output torque	-250.0–250.0%	0.0%
P17.15	Torque reference value	-300.0–300.0% (of rated motor current)	0.0%

5.5.6 Motor parameter



- Check the safety conditions surrounding the motor and load machinery before autotuning as physical injury may occur due to sudden start of motor during autotuning.
- ♦ Although the motor does not run during static autotuning, the motor is still supplied with power, do not touch the motor during autotuning; otherwise, electric shock may occur.



If the motor has been connected to load, do not carry out rotary autotuning; otherwise, misact or damage may occur to the VFD. If rotary autotuning is carried out on a motor which has been connected to load, wrong motor parameters and motor misacts may occur. Disconnect the load to carry out autotuning if necessary.

UMI-B7 VFD can drive asynchronous motors and synchronous motors, and it supports two sets of motor parameters, which can be switched over by multifunction digital input terminals or communication modes.

The control performance of the VFD is based on an accurate motor model; therefore, you need to carry out motor parameter autotuning before running the motor for the first time (taking motor 1 as an example).

Note:

- Motor parameters must be set correctly according to motor nameplate.
- If rotary autotuning is selected during motor autotuning, it is a must to disconnect the motor from load to put the motor in static and no-load state, failed to do so may lead to inaccurate autotuned results. At this time, the asynchronous motor can autotune P02.06–P02.10, and synchronous motor can autotune P02.20–P02.23.
- If static autotuning is selected during motor autotuning, there is no need to disconnect the motor from load, as only part of the motor parameters have been autotuned, the control performance may be impacted, under such situation, the asynchronous motor can autotune P02.06–P02.10, while synchronous motor can autotune P02.20–P02.22, P02.23 (counter-emf constant of

synchronous motor 1) can be obtained via calculation.

Motor autotuning can be carried out on current motor only. If you need to perform autotuning on
the other motor, switch over the motor through selecting the switchover channel of motor 1 and
motor 2 by setting the ones of P08.31.

Related parameter list:

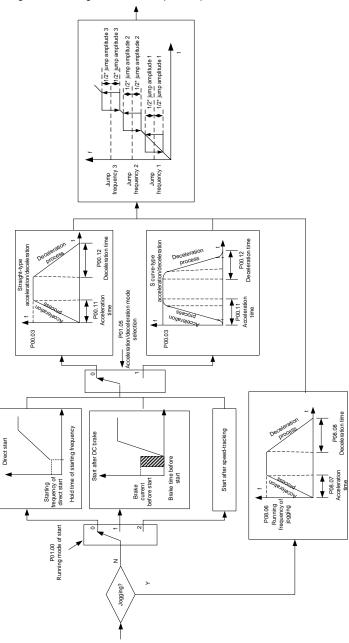
Function code	Name	Detailed parameter description	Default value
		0: Keypad	
P00.01	Running command channel	1: Terminal	0
		2: Communication	
		0: No operation	
		1: Complete rotary parameter autotuning	
		2: Complete static parameter autotuning	
P00.15	Matau navamatau autatunina	3: Partial static parameter autotuning	0
P00.15	Motor parameter autotuning	4: Complete rotary parameter autotuning	0
		2 (for asynchronous motors)	
		5: Partial static parameter autotuning 2	
		(for asynchronous motors)	
D00.00	T of	0: Asynchronous motor	0
P02.00	Type of motor 1	1: Synchronous motor	0
D00.04	Rated power of	0.4.0000.01.14	Depends
P02.01	asynchronous motor 1	0.1–3000.0kW	on model
D00.00	Rated frequency of	0.0411	00 0011
P02.02	asynchronous motor 1	0.01Hz–P00.03 (Max. output frequency)	60.00Hz
D00.00	Rated speed of	1–60000rpm	4700
P02.03	asynchronous motor 1		1700rpm
D00.04	Rated voltage of	0.4000/	Depends
P02.04	asynchronous motor 1	0–1200V	on model
500.05	Rated current of	0.8–6000.0A	Depends
P02.05	asynchronous motor 1		on model
D00.00	Stator resistance of		Depends
P02.06	asynchronous motor 1	0.001–65.535Ω	on model
	Rotor resistance of		Depends
P02.07	asynchronous motor 1	0.001–65.535Ω	on model
	Leakage inductance of		Depends
P02.08	asynchronous motor 1	0.1–6553.5mH	on model
	Mutual inductance of		Depends
P02.09	asynchronous motor 1	0.1–6553.5mH	on model
	No-load current of		Depends
P02.10	asynchronous motor 1	0.1–6553.5A	on model

Function code	Name	Detailed parameter description	Default value
P02.15	Rated power of synchronous motor 1	0.1–3000.0kW	Depends on model
P02.16	Rated frequency of synchronous motor 1	0.01Hz-P00.03 (Max. output frequency)	60.00Hz
P02.17	Number of pole pairs of synchronous motor 1	1–50	2
P02.18	Rated voltage of synchronous motor 1	0–1200V	Depends on model
P02.19	Rated current of synchronous motor 1	0.8–6000.0A	Depends on model
P02.20	Stator resistance of synchronous motor 1	0.001–65.535Ω	Depends on model
P02.21	Direct-axis inductance of synchronous motor 1	0.01–655.35mH	Depends on model
P02.22	Quadrature-axis inductance of synchronous motor 1	0.01–655.35mH	Depends on model
P02.23	Counter-emf constant of synchronous motor 1	0–10000	300
P05.01– P05.06	Function of multifunction digital input terminal (S1–S4, HDIA, HDIB)	35: Motor 1 switches to motor 2	1
P08.31	Switching between motor 1 and motor 2	0x00–0x14 Ones: Switchover channel 0: Terminal 1: Modbus/Modbus TCP communication 2: CANopen communication 3: Ethernet communication 4: EtherCAT/PROFINET/EtherNet IP communication Tens: indicates whether to enable switchover during running 0: Disable 1: Enable	00
P12.00	Type of motor 2	Asynchronous motor Synchronous motor	0
P12.01	Rated power of asynchronous motor 2	0.1–3000.0kW	Depends on model
P12.02	Rated frequency of	0.01Hz–P00.03 (Max. output frequency)	60.00Hz

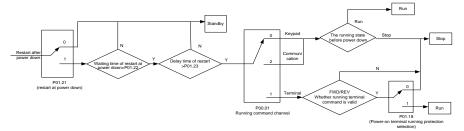
Function code	Name	Detailed parameter description	Default value
	asynchronous motor 2		
P12.03	Rated speed of asynchronous motor 2	1–60000rpm	1700rpm
P12.04	Rated voltage of asynchronous motor 2	0–1200V	
P12.05	Rated current of asynchronous motor 2	0.8–6000.0A	
P12.06	Stator resistance of asynchronous motor 2	0.001–65.535Ω	
P12.07	Rotor resistance of asynchronous motor 2	0.001–65.535Ω	Depends
P12.08	Leakage inductance of asynchronous motor 2	0.1–6553.5mH	on model
P12.09	Mutual inductance of asynchronous motor 2	0.1–6553.5mH	
P12.10	No-load current of asynchronous motor 2	0.1–6553.5A	
P12.15	Rated power of synchronous motor 2	0.1–3000.0kW	
P12.16	Rated frequency of synchronous motor 2	0.01Hz-P00.03 (Max. output frequency)	60.00Hz
P12.17	Number of pole pairs of synchronous motor 2	1–50	2
P12.18	Rated voltage of synchronous motor 2	0–1200V	Depends on model
P12.19	Rated current of synchronous motor 2	0.8–6000.0A	Depends on model
P12.20	Stator resistance of synchronous motor 2	0.001–65.535Ω	Depends on model
P12.21	Direct-axis inductance of synchronous motor 2	0.01–655.35mH	Depends on model
P12.22	Quadrature-axis inductance of synchronous motor 2	0.01–655.35mH	Depends on model
P12.23	Counter-emf constant of synchronous motor 2	0–10000V	300V

5.5.7 Start/stop control

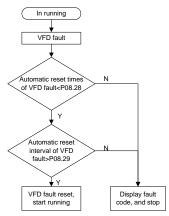
The start/stop control of the VFD is divided into three states: start after running command at power-up; start after restart-at-power-down function is effective; start after automatic fault reset. Descriptions


for these three start/stop control states are presented below.

There are three start modes for the VFD, which are start at starting frequency, start after DC braking, and start after speed-tracking. You can select the proper start mode based on field conditions.


For large-inertia load, especially in cases where reversal may occur, you can choose to start after DC braking or start after speed-racking.

Note: It is recommended to drive synchronous motors in direct start mode.


1. Logic diagram for running command after power-up

2. Logic diagram for restart after power-down

3. Logic diagram for restart after automatic fault reset.

Related parameter list:

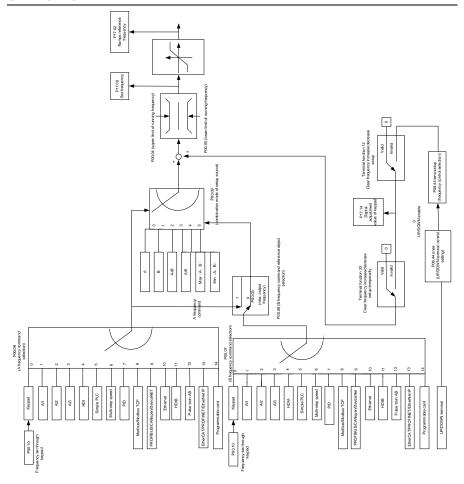
Function code	Name	Detailed parameter description	Default value
		0: Keypad	
P00.01	Running command channel	1: Terminal	0
		2: Communication	
P00.11	Acceleration time 1	0.0–3600.0s	Depends
P00.11	Acceleration time 1	0.0–3600.0s	on model
P00.12	Deceleration time 1	0.0–3600.0s	Depends
P00.12	Deceleration time 1	0.0–3000.0s	on model
		0: Direct start	
	Running mode of start	1: Start after DC braking	
P01.00		2: Start after speed-tracking (with	0
P01.00		excitation)	U
		3: Start after speed-tracking (without	
		excitation)	
P01.01	Starting frequency of direct	0.00–50.00Hz	0.50Hz

Function code	Name	Detailed parameter description	Default value
	start		
P01.02	Hold time of starting frequency	0.0-50.0s	0.0s
P01.03	DC braking current before start	0.0–100.0%	0.0%
P01.04	DC braking time before start	0.00–50.00s	0.00s
P01.05	Acceleration/deceleration mode	0: Straight line 1: S curve Note: If mode 1 is selected, it is required to set P01.06, P01.07, P01.27 and P01.08 accordingly.	0
P01.08	Stop mode	0: Decelerate to stop 1: Coast to stop	0
P01.09	Starting frequency of DC braking after stop	0.00Hz–P00.03 (Max. output frequency)	0.00Hz
P01.10	Waiting time of DC braking after stop	0.00-50.00s	0.00s
P01.11	DC braking current of stop	0.0–100.0% (of rated VFD output current)	0.0%
P01.12	DC braking time of stop	0.00–50.00s	0.00s
P01.13	Dead zone time of forward/reverse rotation	0.0–3600.0s	0.0s
P01.14	Forward/reverse rotation switchover mode	switch over after zero frequency switch over after starting frequency switch over after passing stop speed and delay	0
P01.15	Stop speed	0.00–100.00Hz	0.50 Hz
P01.16	Stop speed detection mode	Set value of speed (the only detection mode valid in V/F mode) Detection value of speed	1
P01.18	Power-on terminal running protection selection	O: Terminal running command is invalid at power up. Note that the value takes effect only when P01.21 is also set to 0. Terminal running command is valid at power up.	0
P01.19	Action selected when running frequency less than frequency lower limit (valid	Setting range: 0x00–0x12 This parameter specifies the running status of VFD when the set frequency is	0x00

Function code	Name	Detailed parameter description	Default value
	when frequency lower limit	below the lower limit.	
	greater than 0)	Ones place: Action selection	
		0: Run in lower limit of the frequency	
		1: Stop	
		2: Sleep Tens place: Stop mode 0: Coast to stop	
		1: Decelerate to stop	
		The VFD stops as set in the tens place if	
		the action selection is stop or sleep when	
		the set frequency is below the lower limit.	
		The VFD resumes the running state	
		automatically when the set frequency is	
		above the lower limit again and this	
		situation lasts for the time set by P01.20.	
P01.20	Wake-up-from-sleep delay	0.0–3600.0s (valid when the ones place of P01.19 is 2)	0.0s
P01.21	Restart after power down	0: Restart is disabled	0
P01.21	Restart arter power down	1: Restart is enabled	U
P01.22	Waiting time of restart after power down	0.0–3600.0s (valid when P01.21 is 1)	1.0s
P01.23	Start delay	0.0-60.0s	0.0s
P01.24	Stop speed delay	0.0-100.0s	0.0s
P01.25	Open-loop 0Hz output selection	O: No voltage output I: With voltage output C: Output as per DC braking current of stop O: No voltage output D: No voltage output	0
P01.26	Deceleration time of emergency-stop	0.0-60.0s	2.0s
P01.27	Time of starting section of deceleration S curve	0.0-50.0s	0.1s
P01.28	Time of ending section of deceleration S curve	0.0–50.0s	0.1s
P01.29	Short-circuit braking current	0.0-150.0% (of rated VFD output current)	0.0%
P01.30	Hold time of short-circuit braking at startup	0.00-50.00s	0.00s
P01.31	Hold time of short-circuit braking at stop	0.00-50.00s	0.00s

Function code	Name	Detailed parameter description	Default value
P01.32	Pre-exciting time of jogging	0.000-10.000s	0.300s
P01.33	Starting frequency of braking for jogging to stop	0.00Hz-P00.03	0.00Hz
P01.34	Delay to enter sleep	0.0–3600.0s	0.0s
P05.01– P05.06	Digital input function selection	1: Forward running 2: Reverse running 4: Forward jogging 5: Reverse jogging 6: Coast to stop 7: Fault reset 8: Running pause 21: Acceleration/deceleration time selection 1 22: Acceleration/deceleration time selection 2 30: Acceleration/deceleration disabled	1
P08.06	Running frequency of jog	0.00Hz–P00.03 (Max. output frequency)	5.00Hz
P08.07	Acceleration time at jogging	0.0–3600.0s	Depends on model
P08.08	Deceleration time at jogging	0.0–3600.0s	Depends on model
P08.00	Acceleration time 2	0.0–3600.0s	Depends on model
P08.01	Declaration time 2	0.0–3600.0s	Depends on model
P08.02	Acceleration time 3	0.0–3600.0s	Depends on model
P08.03	Declaration time 3	0.0–3600.0s	Depends on model
P08.04	Acceleration time 4	0.0–3600.0s	Depends on model
P08.05	Declaration time 4	0.0–3600.0s	Depends on model
P08.19	Switching frequency of acceleration/deceleration time	0.00–P00.03 (Max. output frequency) 0.00Hz: No switch over If the running frequency is larger than P08.19, switch to acceleration /deceleration time 2	0

Function code	Name	Detailed parameter description	Default value
		0: Max. output frequency	
	Reference frequency of	1: Set frequency	
P08.21	acceleration/deceleration	2: 100Hz	0
	time	Note: Valid for straight-line	
		acceleration/deceleration only	
P08.28	Automatic fault reset times	0–10	0
P08.29	Automatic fault reset time interval	0.1–3600.0s	1.0s


5.5.8 Frequency setting

The UMI-B7 series VFD supports multiple kinds of frequency reference modes, which can be categorized into two types: main reference channel and auxiliary reference channel.

There are two main reference channels, namely frequency reference channel A and frequency reference channel B. These two channels support simple arithmetical operation between each other, and they can be switched dynamically by setting multifunction terminals.

There is one input mode for auxiliary reference channel, namely terminal UP/DOWN switch input. By setting function codes, you can enable the corresponding reference mode and the impact made on the VFD frequency reference by this reference mode.

The actual reference for VFD is comprised of the main reference channel and auxiliary reference channel.

UMI-B7 VFD supports switchover between different reference channels, and the rules for channel switchover are shown below.

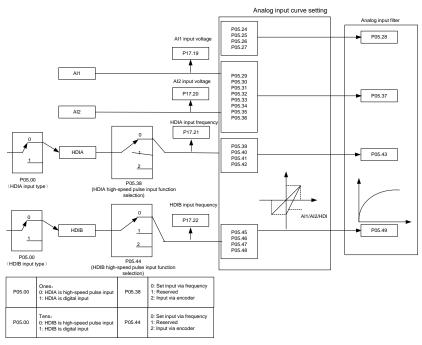
Present reference channel P00.09	Multifunction terminal function 13 Channel A switched to channel B	Multifunction terminal function 14 Combination setting switched to channel A	Multifunction terminal function 15 Combination setting switched to channel B
Α	В	1	1
В	А	1	1
A+B	1	А	В
A-B	1	A	В
Max (A, B)	1	А	В

Present reference channel P00.09	Multifunction terminal function 13 Channel A switched to channel B	Multifunction terminal function 14 Combination setting switched to channel A	Multifunction terminal function 15 Combination setting switched to channel B
Min (A, B)	/	Α	В

Note: "/" indicates this multifunction terminal is invalid under present reference channel.

When setting the auxiliary frequency inside the VFD via multifunction terminal UP (10) and DOWN (11), you can increase/decrease the frequency quickly by setting P08.45 (UP terminal frequency incremental change rate) and P08.46 (DOWN terminal frequency decrement change rate).

Related parameter list:


Function code	Name	Detailed parameter description	Default value
P00.03	Max. output frequency	Max.(P00.04, 10.00) – 630.00Hz	60.00Hz
P00.04	Upper limit of running frequency	P00.05-P00.03	60.00Hz
P00.05	Lower limit of running frequency	0.00Hz-P00.04	0.00Hz
P00.06	A frequency command selection	0: Set via keypad 1: Set via Al1	0
P00.07	B frequency command selection	2: Set via AI2 3: Set via AI3 4: Set via high-speed pulse HDIA 5: Set via simple PLC program 6: Set via multi-step speed running 7: Set via PID control 8: Set via Modbus/Modbus TCP communication 9: Set via CANopen communication	15

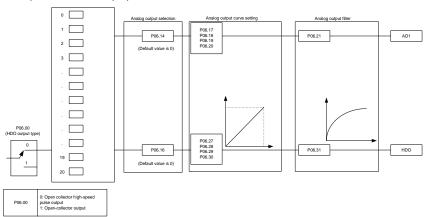
Function code	Name	Detailed parameter description	Default value
		10: Set via Ethernet communication 11: Set via high-speed pulse HDIB 12: Set via Pulse train AB 13: Set via EtherCAT/PROFINET/EtherNet IP	
		communication 14: Set via programmable card 15: Reserved	
P00.08	Reference object of B frequency command	0: Max. output frequency 1: A frequency command	0
P00.09	Combination mode of setting source	0: A 1: B 2: (A+B) 3: (A-B) 4: Max (A, B) 5: Min (A, B)	0
P05.01– P05.06	Function of multifunction digital input terminal (S1– S4, HDIA, HDIB)	10: Frequency increase (UP) 11: Frequency decrease (DOWN) 12: Clear frequency increase/decrease setting 13: Switchover between setting A and setting B 14: Switchover between combination setting and setting A 15: Switchover between combination setting and setting B	1
P08.42	Reserved	1	/
P08.43	Reserved	1	/
P08.44	UP/DOWN terminal control	0x000–0x221 Ones: Frequency enabling selection 0: Setting through the UP/DOWN terminal is valid 1: Setting through the UP/DOWN terminal is invalid Tens: Frequency control selection 0: Valid only when P00.06=0 or P00.07=0 1: Valid for all frequency modes	0x000

Function code	Name	Detailed parameter description	Default value
		2: Invalid for multi-step speed when	
		multi-step speed takes priority	
		Hundreds: Action selection at stop	
		0: Valid	
		1: Valid during running, clear after stop	
		2: Valid during running, clear after	
		receiving stop command	
P08.45	UP terminal frequency	0.01–50.00 Hz/s	0.50
P08.45	incremental change rate		Hz/s
P08.46	DOWN terminal frequency	0.04.50.0011./	0.50
P00.40	decrement change rate	0.01–50.00 Hz/s	Hz/s
P17.00	Set frequency	0.00Hz–P00.03 (Max. output frequency)	0.00Hz
P17.02	Ramps reference frequency	0.00Hz–P00.03 (Max. output frequency)	0.00Hz
P17.14	Digital adjustment value	0.00Hz-P00.03	0.00Hz

5.5.9 Analog input

The UMI-B7 series VFD carries two analog input terminals (Al1 is 0–10V/0–20mA (voltage input or current input can be set by P05.50); Al2 is -10–10V) and two high-speed pulse input terminals. Each input can be filtered separately, and the corresponding reference curve can be set by adjusting the reference corresponds to the max. value and min. value.

Related parameter list:


Function code	Name	Detailed parameter description	Default value
		0x00-0x11	
		Ones: HDIA input type 0: HDIA is high-speed pulse input	
P05.00	HDI input type	1: HDIA is digital input	0x00
		Tens: HDIB input type	
		0: HDIB is high-speed pulse input	
		1: HDIB is digital input	
P05.24	Lower limit value of Al1	0.00V-P05.26	0.00V
P05.25	Corresponding setting of lower limit of Al1	-300.0%-300.0%	0.0%
P05.26	Upper limit value of AI1	P05.24–10.00V	10.00V
P05.27	Corresponding setting of upper limit of Al1	-300.0%-300.0%	100.0%
P05.28	Input filter time of AI1	0.000s-10.000s	0.100s
P05.29	Lower limit value of Al2	-10.00V–P05.31	-10.00V

Function code	Name	Detailed parameter description	Default value
P05.30	Corresponding setting of lower limit of Al2	-300.0%–300.0%	-100.0%
P05.31	Intermediate value 1 of Al2	P05.29–P05.33	0.00V
P05.32	Corresponding setting of intermediate value 1 of Al2	-300.0%–300.0%	0.0%
P05.33	Intermediate value 2 of Al2	P05.31–P05.35	0.00V
P05.34	Corresponding setting of intermediate value 2 of Al2	-300.0%–300.0%	0.0%
P05.35	Upper limit value of Al2	P05.33-10.00V	10.00V
P05.36	Corresponding setting of upper limit of Al2	-300.0%–300.0%	100.0%
P05.37	Input filter time of AI2	0.000s-10.000s	0.100s
P05.38	HDIA high-speed pulse input function	0: Set input via frequency 1: Reserved 2: Input via encoder, used in combination with HDIB	0
P05.39	Lower limit frequency of HDIA	0.000 kHz – P05.41	0.000kHz
P05.40	Corresponding setting of lower limit frequency of HDIA	-300.0%-300.0%	0.0%
P05.41	Upper limit frequency of HDIA	P05.39–50.000kHz	50.000kHz
P05.42	Corresponding setting of upper limit frequency of HDIA	-300.0%-300.0%	100.0%
P05.43	HDIA frequency input filter time	0.000s-10.000s	0.030s
P05.44	HDIB high-speed pulse input function selection	0: Set input via frequency 1: Reserved 2: Input via encoder, used in combination with HDIA	0
P05.45	Lower limit frequency of HDIB	0.000 kHz – P05.47	0.000kHz
P05.46	Corresponding setting of lower limit frequency of HDIB	-300.0%-300.0%	0.0%

Function code	Name	Detailed parameter description	Default value
P05.47	Upper limit frequency of HDIB	P05.45–50.000kHz	50.000kHz
P05.48	Corresponding setting of upper limit frequency of HDIB	-300.0%-300.0%	100.0%
P05.49	HDIB frequency input filter time	0.000s-10.000s	0.030s
P05.50	Al1 input signal type	0–1 0: Voltage type 1: Current type	0

5.5.10 Analog output

The UMI-B7 series VFD carries one analog output terminal (0–10V/0–20mA) and one high-speed pulse output terminal. Analog output signals can be filtered separately, and the proportional relation can be adjusted by setting the max. value, min. value, and the percentage of their corresponding output. Analog output signal can output motor speed, output frequency, output current, motor torque and motor power at a certain proportion.

AO output relationship description:

(The min. value and max. value of the output correspond to 0.0% and 100.00% of the pulse or analog default output. The actual output voltage or pulse frequency corresponds to the actual percentage, which can be through function codes.)

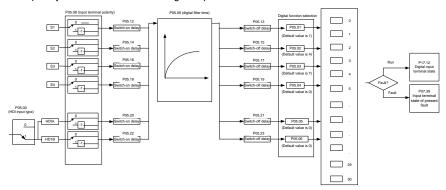
Set value	Function	Description
0	Running frequency	0-Max. output frequency
1	Set frequency	0-Max. output frequency

Set value	Function	Description
2	Ramp reference frequency	0-Max. output frequency
3	Running speed	0–Synchronous speed corresponding to max. output frequency
4	Output current (relative to VFD)	0-Twice the VFD rated current
5	Output current (relative to motor)	0-Twice the motor rated current
6	Output voltage	0–1.5 times the VFD rated voltage
7	Output power	0-Twice the motor rated power
8	Set torque value	0-Twice the motor rated current. A negative value corresponds to 0.0% by default.
9	Output torque	0 – +/-(Twice the motor rated torque)
10	Al1 input value	0–10V/0–20mA
11	Al2 input value	0V–10V. A negative value corresponds to 0.0% by default.
12	Al3 input value	0–10V/0–20mA
13	Input value of high-speed pulse HDIA	0.00–50.00kHz
14	Set value 1 of Modbus communication	0–1000
15	Set value 2 of Modbus communication	0–1000
16	Set value 1 of CANopen communication	0–1000
17	Set value 2 of CANopen communication	0–1000
18	Set value 1 of Ethernet communication	0–1000
19	Set value 2 of Ethernet communication	0–1000
20	Input value of high-speed pulse HDIB	0.00–50.00kHz
21	Set value 1 of EtherCAT/PROFINET/ EtherNet IP communication	0-1000. A negative value corresponds to 0.0% by default.
22	Torque current (bipolar)	0-Triple the motor rated current. A negative value corresponds to 0.0% by default.
23	Exciting current	0-Triple the motor rated current. A negative value

Set value	Function	Description
		corresponds to 0.0% by default.
24	Set frequency (bipolar)	0-Max. output frequency. A negative value corresponds to 0.0% by default.
25	Ramp reference frequency (bipolar)	0-Max. output frequency. A negative value corresponds to 0.0% by default.
26	Running speed (bipolar)	0–Synchronous speed corresponding to max. output frequency. A negative value corresponds to 0.0% by default.
27	Set value 2 of EtherCAT/PROFINET/ EtherNet IP communication	0–1000
28	C_AO1 from PLC	0–1000
29	C_AO2 from PLC	0–1000
30	Running speed	0-Twice the motor rated synchronous speed.
31	Output torque (bipolar)	0-Twice the motor rated torque. A negative value corresponds to 0.0% by default.
32	AI/AO temperature detection output	AO value of AI/AO temperature detection

Related parameter list:

Function code	Name	Detailed parameter description	Default value
P06.00	HDO output type	0: Open collector high-speed pulse output	0
		1: Open collector output	
P06.14	AO1 output selection	0: Running frequency (0–Max. output	0
P06.15	Reserved	frequency)	0
P06.16	HDO high-speed pulse output	1: Set frequency (0–Max. output frequency) 2: Ramp reference frequency (0–Max. output frequency) 3: Rotational speed (100% corresponds to the speed at max. output frequency.) 4: Output current (100% corresponds to twice the VFD rated current.) 5: Output current (100% corresponds to twice the motor rated current.) 6: Output voltage (100% corresponds to	0


Function	Name	Detailed parameter description	Default
code			value
		1.5 times the VFD rated voltage.)	
		7: Output power (100% corresponds to	
		twice the motor rated power.)	
		8: Set torque (100% corresponds to	
		twice the motor rated current.)	
		9: Output torque (Absolute value; 100%	
		corresponds to twice the motor rated	
		torque.)	
		10: Al1 input (0–10V/0–20mA)	
		11: Al2 input (0–10V)	
		12: Al3 input (0–10V/0–20mA)	
		13: HDIA input (0.00–50.00kHz)	
		14: Value 1 set through Modbus	
		communication (0–1000)	
		15: Value 2 set through Modbus	
		communication (0–1000)	
		16: Value 1 set through CANopen (0–	
		1000)	
		17: Value 2 set through CANopen (0–	
		1000)	
		18: Value 1 set through Ethernet 1 (0– 1000)	
		19: Value 2 set through Ethernet 2 (0–	
		1000)	
		20: HDIB input (0.00-50.00kHz)	
		21: Value 1 set through	
		EtherCAT/PROFINET/EtherNet IP (0-	
		1000)	
		22: Torque current (bipolar; 100%	
		corresponds to triple the motor rated	
		current.)	
		23: Exciting current (bipolar; 100%	
		corresponds to triple the motor rated	
		current.)	
		24: Set frequency (bipolar; 0–Max.	
		output frequency)	
		25: Ramp reference frequency (bipolar;	
		0–Max. output frequency)	
		26: Rotational speed (bipolar; 0-Speed	

Function code	Name	Detailed parameter description	Default value
code	Name	corresponding to max. output frequency) 27: Value 2 set through EtherCAT/PROFINET/EtherNet IP communication (0–1000) 28: AO1 from the programmable card (0–1000) 29: AO2 from the programmable card (0–1000) 30: Rotational speed (100% corresponds to twice the motor rated synchronous speed) 31: Output torque (Actual value, 100% corresponds to twice the motor rated torque) 32: AI/AO temperature detection output	value
		33–63: Reserved Note: When AO1 is of the current output type, 100% corresponds to 20mA; when AO1 is of the voltage output type, 100% corresponds to 10V; 100% of HDO corresponds to the output of P06.30.	
P06.17	Lower limit of AO1 output	-300.0%–P06.19	0.0%
P06.18	Corresponding AO1 output of lower limit	0.00V-10.00V	0.00V
P06.19	Upper limit of AO1 output	P06.17-300.0%	100.0%
P06.20	Corresponding AO1 output of upper limit	0.00V-10.00V	10.00V
P06.21	AO1 output filter time	0.000s-10.000s	0.000s
P06.22	Reserved		
P06.23	PTC constant output current setting	0.000–20.000mA	4.000mA
P06.24	PTC resistance alarm threshold	0–60000Ω	750Ω
P06.25	PTC resistance alarm recovery threshold	0–60000Ω	150Ω
P06.26	Actual PTC resistance	0–60000Ω	0Ω

Function code	Name	Detailed parameter description	Default value
P06.27	Lower limit of HDO output	-300.0%–P06.29	0.0%
P06.28	Corresponding HDO output of lower limit	0.00-50.00kHz	0.0kHz
P06.29	Upper limit of HDO output	P06.27–300.0%	100.0%
P06.30	Corresponding HDO output of upper limit	0.00-50.00kHz	50.00kHz
P06.31	HDO output filter time	0.000s-10.000s	0.000s

5.5.11 Digital input

The UMI-B7 series VFD carries four programmable digital input terminals and two HDI input terminals. The function of all the digital input terminals can be programmed by function codes. HDI input terminal can be set to act as high-speed pulse input terminal or common digital input terminal; if it is set to act as high-speed pulse input terminal, you can also set HDIA or HDIB high-speed pulse input to serve as the frequency reference and encoder signal input.

This parameter is used to set the corresponding function of digital multifunction input terminals.

Note: Two different multifunction input terminals cannot be set to the same function.

Setting	Function	Description
0	No function	The VFD does not act even if there is signal input; you can set the unused terminals to "no function" to avoid misacts.
1	Forward running (FWD)	Control the forward/reverse running of the VFD by
2	Reverse running (REV)	external terminals.
3	3-wire control/S _{in}	Set the VFD running mode to 3-wire control mode by this terminal. See P05.13 for details.
4	Forward jogging	Frequency when jogging, see P08.06, P08.07 and

Setting	Function	Description
5	Reverse jogging	P08.08 for jogging acceleration/deceleration time.
6	Coast to stop	The VFD blocks output, and the stop process of motor is uncontrolled by the VFD. This mode is applied in cases of large-inertia load and free stop time; its definition is the same with P01.08, and it is mainly used in remote control.
7	Fault reset	External fault reset function, its function is the same with the STOP/RST key on the keypad. This function can be used in remote fault reset.
8	Running pause	The VFD decelerates to stop, however, all the running parameters are in memory state, such as PLC parameter, wobbling frequency, and PID parameter. After this signal disappears, the VFD will revert to the state before stop.
9	External fault input	When external fault signal is transmitted to the VFD, the VFD releases fault alarm and stops.
10	Frequency increase (UP)	Used to change the frequency-increase/decrease
11	Frequency decrease (DOWN)	command when the frequency is given by external terminals.
12	Clear frequency increase/decrease setting	UP terminal DOWN terminal UP/DOWN Zeroing terminal COM The terminal used to clear frequency-increase/decrease setting can clear the frequency value of auxiliary channel set by UP/DOWN, thus restoring the reference frequency to the frequency given by main reference frequency command channel.
13	Switching between A setting and B setting	This function is used to switch between the frequency setting channels.
14	Switching between combination setting and A setting	A frequency reference channel and B frequency reference channel can be switched by no. 13 function; the combination channel set by P00.09 and the A
15	Switching between combination setting and B setting	frequency reference channel can be switched by no. 14 function; the combination channel set by P00.09 and the B frequency reference channel can be switched by no. 15 function.

Setting	Function		Description					
16	Multi-step speed terminal 1	16-step s	16-step speeds can be set by combining digital states of					
17	Multi-step speed terminal 2	these four terminals.						
18	Multi-step speed terminal 3		Note: Multi-step speed 1 is low bit, multi-step speed 4 is					
		high bit.					- 1	
40		Multi-s	•		ılti-step	Multi-step)	Multi-step
19	Multi-step speed terminal 4	speed	4	Ė	eed 3	speed 2		speed 1
		BIT3		BI	T2	BIT1		BIT0
20	Multi-step speed pause	Pause mi	ulti-ste	ep s	peed sele	ction function	on t	o keep the
		set value						
21	Acceleration/deceleration					elect four g	rou	ps of
	time selection 1	accelerat	ion/de	cora	ation time			
		Terminal	Term	inal	Accelera		Со	rresponding
		1	2		decelera		parameter	
					selection Accelera			
		OFF	OFF			tion time 1	P0	0.11/P00.12
22	Acceleration/deceleration time selection 2				Accelera			
		ON	OFF [tion time 2	P0	P08.00/P08.01
		OFF		Accelera		tion/		
			ON		decelera	tion time 3	P0	8.02/P08.03
		ON ON		Accelerat		tion/	D00 04/D00 05	0.04/D00.05
		ON ON deceleration time 4 P08.04/P08					0.04/P00.05	
23	Simple PLC stop reset	Restart s	imple	PLC	process	and clear p	orev	ious PLC
20	Olimpic i EO stop ieset	state info	rmati	on.				
			•		•			and keeps
24	Simple PLC pause	running in current speed step. After this function is						
		cancelled						
25	PID control pause				. ,	, and the V	FD	maintains
		current fro	-		•	output Affor	r thi	s function is
26	Wobbling frequency pause							operation at
	(stop at current frequency)	current fr					y '	oporation at
	Wobbling frequency reset							
27	(revert to center frequency)	The set fr	eque	ncy (of VFD re	verts to cer	nter	frequency.
28	Counter reset	Zero out the counter state.						
	Switching between speed	The VFD	switc	hes	from torq	ue control n	nod	e to speed
29	control and torque control	The VFD switches from torque control mode to speed control mode, or vice versa.						
20	Acceleration/deceleration	Ensure th	e VF	D wi	II not be ir	npacted by	ext	ternal signals
30	disabled	(except fo	or stop	o coi	mmand) a	ınd maintaiı	ns c	current output
-101-								

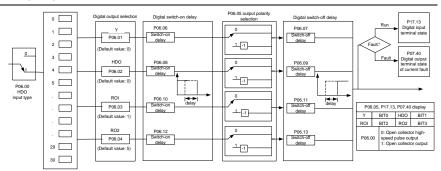
Setting	Function	Description
		frequency.
31	Counter trigger	Enable pulse counting of the counter.
33	Clear frequency increase/decrease setting temporarily	When the terminal is closed, the frequency value set by UP/DOWN can be cleared to restore the reference frequency to the frequency given by frequency command channel; when terminal is disconnected, it will revert to the frequency value after frequency increase/decrease setting.
34	DC braking	The VFD starts DC braking immediately after the command becomes valid.
35	Switching between motor 1 and motor 2	When this terminal is valid, you can realize switchover control of two motors.
36	Command switches to keypad	When this terminal is valid, the running command channel will switch to keypad compulsorily. If this function becomes invalid, the running command channel will revert to the original state.
37	Command switches to terminal	When this terminal is valid, the running command channel will switch to terminal compulsorily. If this function becomes invalid, the running command channel will revert to the original state.
38	Command switches to communication	When this terminal is valid, the running command channel will switch to communication compulsorily. If this function becomes invalid, the running command channel will revert to the original state.
39	Pre-exciting command	When this terminal is valid, motor pre-exciting will be started until this terminal becomes invalid.
40	Zero out power consumption quantity	After this command becomes valid, the power consumption quantity of the VFD will be zeroed out.
41	Maintain power consumption quantity	When this command is valid, current operation of the VFD will not impact the power consumption quantity.
42	Source of upper torque limit switches to keypad	When this command is valid, the upper limit of the torque will be set by keypad
43	Position reference point input	Valid only for S2, S3, and S4.
44	Disable spindle orientation	Spindle orientation is invalid.
45	Spindle zeroing/local position zeroing	Spindle positioning is triggered.
46	Spindle zero position selection 1	Spindle zero position selection 1.

Setting	Function	Description
47	Spindle zero position selection 2	Spindle zero position selection 2.
48	Spindle scale division selection 1	Spindle scale division selection 1.
49	Spindle scale division selection 2	Spindle scale division selection 2.
50	Spindle scale division selection 3	Spindle scale division selection 3.
51	Position/speed control switchover terminal	Terminal for switching between position control and speed control.
52	Disable pulse input	Pulse input is invalid when the terminal is valid.
53	Clear position deviation	Used to clear the input deviation of position loop.
54	Switch position proportional gains	Used to switch position proportional gains.
55	Enable cyclic digital positioning	Cyclic positioning can be enabled when digital positioning is valid.
56	Emergency stop	When this command is valid, the motor decelerate to emergency stop as per the time set by P01.26.
57	Motor over-temperature fault input	Motor stops at motor over-temperature fault input.
59	FVC switches to SVPWM control	When this terminal is valid in stop state, switch to SVPWM control.
60	Switch to FVC control	When this terminal is valid in stop state, switch to FVC (closed-loop vector) control.
61	PID polarity switchover	Switching the output polarity of PID, this terminal should be used in conjunction with P09.03
62	Reserved	
63	Enable servo	When the thousands place of P21.00 is set to enable the servo, the servo enabling terminal is valid, which controls the VFD to enter zero servo control. At this situation, no startup command is needed.
64	FWD max. limit	Max frequency limit on forward rotation
65	REV max limit	Max frequency limit on reverse rotation
66	Zero out the counter	Zero out the position counting value
67	Pulse increase	When the terminal function is valid, the pulse input is increased according to the P21.27 pulse speed.
68	Enable pulse	When the pulse superimposition is enabled, pulse

Setting	Function	Description
	superimposition	increase and pulse decrease are effective.
69	Pulse decrease	When the terminal function is valid, the pulse input is decreased according to the P21.27 pulse speed.
70	Electronic gear selection	When the terminal is valid, the proportional numerator is switched to the P21.30 numerator of the 2 nd command ratio.
71	Switch to mater	In stopped state, if the function is valid, the master is used.
72	Switch to slave	In stopped state, if the function is valid, the slave is used.
73	Reset roll diameter	Used to reset the roll diameter when the tension control function is enabled.
74	Switch winding/unwinding	Used to switch winding/unwinding modes when the tension control function is enabled.
75	Tension control pre-drive	If the terminal is valid when the tension control function is enabled, tension control pre-drive is performed.
76	Disable roll diameter calculation	If the terminal is valid when the tension control function is enabled, roll diameter calculation is disabled.
77	Clear alarm display	Used to clear the alarm display when the tension control function is enabled.
78	Manual braking of tension control	If the terminal is valid when the tension control function is enabled, manual braking is activated.
79	Trigger forced feeding interrupt	If the terminal is valid when the tension control function is enabled, a feeding interrupt signal is triggered forcibly.
80	Initial roll diameter 1	Used to select different initial roll diameters by combining with the initial roll diameter 2 when the tension control function is enabled.
81	Initial roll diameter 2	Used to select different initial roll diameters by combining with the initial roll diameter 1 when the tension control function is enabled.
82	Trigger fire mode control	In fire mode, if the terminal is valid, the fire mode control signal is triggered.
83	Switch tension PID parameters	Used to switch two PID parameter groups when the tension control function is enabled. The first group is used by default. If the terminal is valid, the second group is used.
84–95	Reserved	

Related parameter list:

Function code	Name	Detailed parameter description	Default value
P05.00	HDI input type	0x00–0x11 Ones: HDIA input type 0: HDIA is high-speed pulse input 1: HDIA is digital input Tens: HDIB input type 0: HDIB is high-speed pulse input 1: HDIB is digital input	0x00
P05.01	Function of S1 terminal	0: No function	1
P05.02	Function of S2 terminal	1: Forward running	4
P05.03	Function of S3 terminal	2: Reverse running 3: 3-wire control/S _{in}	7
P05.04	Function of S4 terminal	4: Forward jogging	0
P05.05	Function of HDIA terminal	5: Reverse jogging	0
P05.06	Function of HDIB terminal	6: Coast to stop 7: Fault reset 8: Running pause 9: External fault input 10: Frequency increase (UP) 11: Frequency decrease (DOWN) 12: Clear frequency increase/decrease setting 13: Switchover between setting A and setting B 14: Switchover between combination setting and A setting 15: Switchover between combination setting and setting B 16: Multi-step speed terminal 1 17: Multi-step speed terminal 2 18: Multi-step speed terminal 3 19: Multi-step speed terminal 4 20: Multi-step speed pause 21: Acceleration/deceleration time selection 1 22: Acceleration/deceleration time selection 2 23: Simple PLC stop reset 24: Simple PLC pause 25: PID control pause	0


Function code	Name	Detailed parameter description	Default value
Code		26: Wobbling frequency pause	Value
		27: Wobbling frequency reset	
		28: Counter reset	
		29: Switching between speed control	
		and torque control	
		30: Acceleration/deceleration	
		disabled	
		31: Counter trigger	
		32: Reserved	
		33: Clear frequency	
		increase/decrease setting	
		temporarily	
		34: DC braking	
		35: Switch from motor 1 to motor 2	
		36: Command switches to keypad	
		37: Command switches to terminal	
		38: Command switches to	
		communication	
		39: Pre-exciting command	
		40: Zero out power consumption	
		quantity	
		41: Maintain power consumption	
		quantity	
		42: Switching the upper torque limit	
		setting mode to keypad	
		43: Position reference point input	
		(valid only for S2, S3, and S4)	
		44: Spindle orientation disabled	
		45: Spindle zeroing/local position	
		zeroing	
		46: Spindle zero-position setting 1	
		47: Spindle zero-position setting 2	
		48: Spindle indexing setting 1	
		49: Spindle indexing setting 2	
		50: Spindle indexing setting 3	
		51: Terminal for switching between	
		position control and speed control	
		52: Disable pulse input	
		53: Eliminate position deviation	

Function code	Name	Detailed parameter description	Default value
		54: Switch position proportional gain	
		55: Enable cyclic digital positioning	
		56: Emergency stop	
		57: Motor overtemperature fault input	
		59: Switch to V/F control	
		60: Switch to FVC control	
		61: PID polarity switchover	
		62: Reserved	
		63: Enable servo	
		64: FWD max. limit	
		65: REV max limit	
		66: Zero out encoder counting	
		67: Pulse increase	
		68: Enable pulse superimposition	
		69: Pulse decrease	
		70: Electronic gear selection	
		71: Switch to the master	
		72: Switch to the slave	
		73: Reset the roll diameter	
		74: Switch winding/unwinding	
		75: Pre-drive	
		76: Disable roll diameter calculation	
		77: Clear alarm display	
		78: Manual braking	
		79: Trigger forced feeding interrupt	
		80: Initial roll diameter 1	
		81: Initial roll diameter 2	
		82: Trigger fire mode control	
		83: Switch tension PID parameters	
		84–95: Reserved	
P05.07	Reserved		
P05.08	Polarity of input terminal	0x00-0x3F	0x00
P05.09	Digital filter time	0.000-1.000s	0.010s
		0x00–0x3F (0: disable, 1: enable)	
		BIT0: S1 virtual terminal	
P05.10	Virtual terminal setting	BIT1: S2 virtual terminal	0x00
		BIT2: S3 virtual terminal	
		BIT3: S4 virtual terminal	

Function code	Name	Detailed parameter description	Default value
		BIT4: HDIA virtual terminal	
		BIT5: HDIB virtual terminal	
		0: 2-wire control 1	
P05.11	2/3-wire control mode	1: 2-wire control 2	0
1 00.11	270 Wile control mode	2: 3-wire control 1	· ·
		3: 3-wire control 2	
P05.12	S1 terminal switch-on delay	0.000–50.000s	0.000s
P05.13	S1 terminal switch-off delay	0.000-50.000s	0.000s
P05.14	S2 terminal switch-on delay	0.000-50.000s	0.000s
P05.15	S2 terminal switch-off delay	0.000-50.000s	0.000s
P05.16	S3 terminal switch-on delay	0.000-50.000s	0.000s
P05.17	S3 terminal switch-off delay	0.000-50.000s	0.000s
P05.18	S4 terminal switch-on delay	0.000-50.000s	0.000s
P05.19	S4 terminal switch-off delay	0.000-50.000s	0.000s
P05.20	HDIA terminal switch-on delay	0.000-50.000s	0.000s
P05.21	HDIA terminal switch-off delay	0.000-50.000s	0.000s
P05.22	HDIB terminal switch-on delay	0.000-50.000s	0.000s
P05.23	HDIB terminal switch-off delay	0.000-50.000s	0.000s
P07.39	Input terminal state at present fault	1	0x0000
P17.12	Digital input terminal state	1	0x00

5.5.12 Digital output

The UMI-B7 series VFD carries two groups of relay output terminals, one open collector Y output terminal and one high-speed pulse output (HDO) terminal. The function of all the digital output terminals can be programmed by function codes, of which the high-speed pulse output terminal HDO can also be set to high-speed pulse output or digital output by function code.

The table below lists the options for the above four function parameters, and you are allowed to select the same output terminal functions repetitively.

Setting	Function	Description
0	Invalid	The output terminal has no function.
4		Output ON signal when there is frequency output
1	In running	during running.
2	In forward running	Output ON signal when there is frequency output
	in lorward running	during forward running.
3	In reverse running	Output ON signal when there is frequency output
3	in reverse running	during reverse running.
4	In jogging	Output ON signal when there is frequency output
4	in jogging	during jogging.
5	VFD fault	Output ON signal when VFD fault occurred.
6	Frequency level detection	Refer to P08.32 and P08.33.
	FDT1	101 to 1 00.02 and 1 00.00.
7	Frequency level detection	Refer to P08.34 and P08.35.
	FDT2	
8	Frequency reached	Refer to P08.36.
9	Running in zero speed	Output ON signal when the VFD output frequency
	Training in Zero speed	and reference frequency are both zero.
10	Reach upper limit frequency	Output ON signal when the running frequency
10	reach apper limit nequency	reaches upper limit frequency
11	Reach lower limit frequency	Output ON signal when the running frequency
	Treadiniower militime duelloy	reached lower limit frequency
		Main circuit and control circuit powers are
12	Ready to run	established, the protection functions do not act;
		when the VFD is ready to run, output ON signal.
13	In pre-exciting	Output ON signal during pre-exciting of the VFD
14	Overload pre-alarm	Output ON signal after the pre-alarm time elapsed
14	Overload pre-alaim	based on the pre-alarm threshold; see P11.08-

Setting	Function	Description
		P11.10 for details.
		Output ON signal after the pre-alarm time elapsed
15	Underload pre-alarm	based on the pre-alarm threshold; see P11.11-
		P11.12 for details.
16	Simple PLC state completed	Output signal when current stage of simple PLC is
		Completed
17	Simple PLC cycle completed	Output signal when a single cycle of simple PLC
	Virtual terminal output of	operation is completed
23	Virtual terminal output of Modbus/Modbus TCP	Output corresponding signal based on the set value
23		of Modbus; output ON signal when it is set to 1,
	communication	output OFF signal when it is set to 0
24	Virtual terminal output of	Output corresponding signal based on the set value
24	CANopen communication	of CANopen; output ON signal when it is set to 1,
		output OFF signal when it is set to 0
25	Virtual terminal output of	Output corresponding signal based on the set value
25	Ethernet communication	of Ethernet; output ON signal when it is set to 1,
		output OFF signal when it is set to 0.
26	DC bus voltage established	Output is valid when the bus voltage is above the
07	7	undervoltage threshold of the inverter
27	Z pulse output	Output is valid when the encoder Z pulse is arrived,
	.	and is invalid after 10ms.
28	During pulse superposition	Output is valid when the pulse superposition
	0.70	terminal input function is valid
29	STO action	Output when STO fault occurred
30	Positioning completed	Output is valid when position control positioning is
		completed
31	Spindle zeroing completed	Output is valid when spindle zeroing is completed
32	Spindle scale-division	Output is valid when spindle scale-division is
	completed	completed
33	In speed limit	Output is valid when the frequency is limited
34	Virtual terminal output of	The corresponding signal is output according to the
	EtherCAT/PROFINET/EtherNet	set value of PROFINET communication. When it is
	IP communication	set to 1, the ON signal is output, and when it is set to
		0, the OFF signal is output.
35	Reserved	
36	Speed/position control	Output is valid when the mode switchover is
	switchover completed	completed
37	Any frequency reached	The frequency reached signal is output when the
- 37	, any moquentry reaction	present ramp reference frequency is greater than

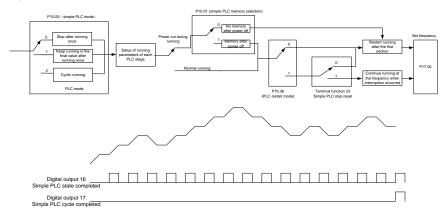
Setting	Function	Description
		the detection value for frequency being reached.
38–40	Reserved	
41	Y1	Y1 from the programmable card
42	Y2	Y2 from the programmable card
43	HDO	HDO from the programmable card
44	RO1	RO1 from the programmable card
45	RO2	RO2 from the programmable card
46	RO3	RO3 from the programmable card
47	RO4	RO4 from the programmable card
40	EC PT100 detected OH pre-	Pre-alarm of overheating (OH) detected by the
48	alarm	expansion card (EC) with PT100.
49	EC PT1000 detected OH pre-	Pre-alarm of OH detected by the EC with PT1000.
49	alarm	
50	AI/AO detected OH pre-alarm	Pre-alarm of OH detected by Al/AO.
51	Stopped or running at zero	The VFD is in stopped state or running at zero
31	speed	speed.
52	Disconnection detected in	Disconnection is detected when the disconnection
52	tension control	detection is enabled in tension control.
53	Roll diameter setting reached	The set roll diameter is reached during running in
55	Roll diameter setting reached	tension control.
54	Max. roll diameter reached	The max. roll diameter is reached during running in
34	wax. roll diameter reached	tension control.
55	Min. roll diameter reached	The min. roll diameter is reached during running in
35	wiin. roii diameter reached	tension control.
56	Fire control mode enabled	The fire mode is turned on.
57–63	Reserved	

Related parameter list:

Function code	Name	Detailed parameter description	Default value
P06.00	HDO output type	O: Open collector high-speed pulse output Copen collector output	0
P06.01	Y1 output selection	0: Invalid	0
P06.02	HDO output selection	1: In running	0
P06.03	Relay RO1 output selection	2: In forward running 3: In reverse running 4: In jogging 5: VFD fault 6: Frequency level detection FDT1	1
P06.04	Relay RO2 output selection		5

Function	Name	Detailed parameter description	Default
code		7. For any and the stine FDTO	value
		7: Frequency level detection FDT2	
		8: Frequency reached	
		9: Running in zero speed	
		10: Reach upper limit frequency	
		11: Reach lower limit frequency	
		12: Ready to run	
		13: In pre-exciting	
		14: Overload pre-alarm	
		15: Underload pre-alarm	
		16: Simple PLC stage completed	
		17: Simple PLC cycle completed	
		18: Reach set counting value	
		19: Reach designated counting value	
		20: External fault is valid	
		21: Reserved	
		22: Reach running time	
		23: Virtual terminal output of	
		Modbus/Modbus TCP communication	
		24: Virtual terminal output of CANopen	
		communication	
		25: Virtual terminal output of Ethernet	
		communication	
		26: DC bus voltage established	
		27: Z pulse output	
		28: During pulse superposition	
		29: STO action	
		30: Positioning completed	
		31: Spindle zeroing completed	
		32: Spindle scale-division completed	
		33: Speed limit reached in torque control	
		34: Virtual terminal output of	
		EtherCAT/PROFINET/EtherNet IP	
		communication	
		35: Reserved	
		36: Speed/position control switchover	
		completed	
		37: Any frequency reached	
		38–40: Reserved	
		41: Y1 from the programmable card	

Function code	Name	Detailed parameter description	Default value
		42: Y2 from the programmable card	
		43: HDO from the programmable card	
		44: RO1 from the programmable card	
		45: RO2 from the programmable card	
		46: RO3 from the programmable card	
		47: RO4 from the programmable card	
		48: EC PT100 detected OH pre-alarm	
		49: EC PT1000 detected OH pre-alarm	
		50: Al/AO detected OH pre-alarm	
		51: Stopped or running at zero speed	
		52: Disconnection detected in tension	
		control	
		53: Roll diameter setting reached	
		54: Max. roll diameter reached	
		55: Min. roll diameter reached	
		56: Fire control mode enabled	
		57–63: Reserved	
P06.05	Output terminal polarity selection	0x00-0x0F	0x00
P06.06	Y switch-on delay	0.000–50.000s	0.000s
P06.07	Y switch-off delay	0.000-50.000s	0.000s
P06.08	HDO switch-on delay	0.000–50.000s (valid only when P06.00=1)	0.000s
P06.09	HDO switch-off delay	0.000–50.000s (valid only when P06.00=1)	0.000s
P06.10	Relay RO1 switch-on delay	0.000-50.000s	0.000s
P06.11	Relay RO1 switch-off delay	0.000-50.000s	0.000s
P06.12	Relay RO2 switch-on delay	0.000–50.000s	0.000s
D 06 15	Relay RO2 switch-off	0.000 50.000-	0.000-
P06.13	delay	0.000–50.000s	0.000s
P07.40	Output terminal state at present fault	1	0
P17.13	Digital output terminal state	1	0


5.5.13 Simple PLC

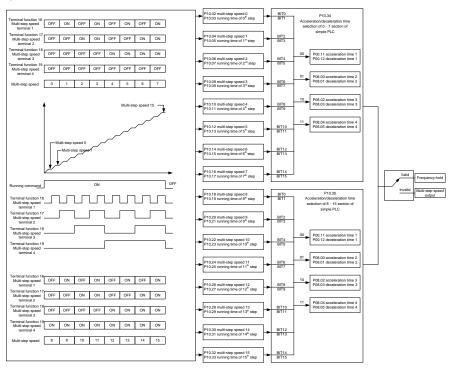
Simple PLC is a multi-step speed generator, and the VFD can change the running frequency and

direction automatically based on the running time to fulfill process requirements. Previously, such function was realized with external PLC, while now, the VFD itself can achieve this function.

The UMI-B7 series VFD can realize 16-step speeds control and provide four groups of acceleration/deceleration time for you to choose from.

After the set PLC completes one cycle (or one section), an ON signal can be output by the multifunction relay.

Related parameter list:

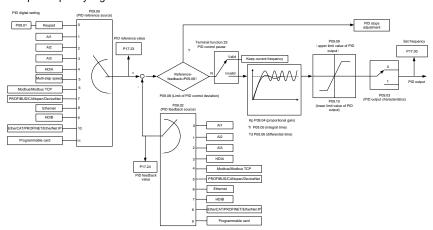

Function code	Name	Detailed parameter description	Default value
P05.01– P05.06	Digital input function	23: Simple PLC stop reset 24: Simple PLC pause 25: PID control pause	
P06.01- P06.04	Digital output function	16: Simple PLC stage reached 17: Simple PLC cycle reached	
P10.00	Simple PLC mode	Stop after running once Keep running in the final value after running once Cyclic running	0
P10.01	Simple PLC memory selection	No memory after power down Hemory after power down	0
P10.02	Multi-step speed 0	-300.0–300.0%	0.0%
P10.03	Running time of step 0	0.0–6553.5s (min)	0.0s
P10.04	Multi-step speed 1	-300.0–300.0%	0.0%
P10.05	Running time of step 1	0.0–6553.5s (min)	0.0s
P10.06	Multi-step speed 2	-300.0–300.0%	0.0%

Function	Name	Detailed parameter description	Default
code	D : " () 0		value
P10.07	Running time of step 2	0.0–6553.5s (min)	0.0s
P10.08	Multi-step speed 3	-300.0–300.0%	0.0%
P10.09	Running time of step 3	0.0–6553.5s (min)	0.0s
P10.10	Multi-step speed 4	-300.0–300.0%	0.0%
P10.11	Running time of step 4	0.0–6553.5s (min)	0.0s
P10.12	Multi-step speed 5	-300.0–300.0%	0.0%
P10.13	Running time of step 5	0.0–6553.5s (min)	0.0s
P10.14	Multi-step speed 6	-300.0–300.0%	0.0%
P10.15	Running time of step 6	0.0–6553.5s (min)	0.0s
P10.16	Multi-step speed 7	-300.0–300.0%	0.0%
P10.17	Running time of step 7	0.0-6553.5s (min)	0.0s
P10.18	Multi-step speed 8	-300.0–300.0%	0.0%
P10.19	Running time of step 8	0.0–6553.5s (min)	0.0s
P10.20	Multi-step speed 9	-300.0–300.0%	0.0%
P10.21	Running time of step 9	0.0–6553.5s (min)	0.0s
P10.22	Multi-step speed 10	-300.0–300.0%	0.0%
P10.23	Running time of step 10	0.0–6553.5s (min)	0.0s
P10.24	Multi-step speed 11	-300.0–300.0%	0.0%
P10.25	Running time of step 11	0.0–6553.5s (min)	0.0s
P10.26	Multi-step speed 12	-300.0–300.0%	0.0%
P10.27	Running time of step 12	0.0–6553.5s (min)	0.0s
P10.28	Multi-step speed 13	-300.0–300.0%	0.0%
P10.29	Running time of step 13	0.0–6553.5s (min)	0.0s
P10.30	Multi-step speed 14	-300.0–300.0%	0.0%
P10.31	Running time of step 14	0.0–6553.5s (min)	0.0s
P10.32	Multi-step speed 15	-300.0–300.0%	0.0%
P10.33	Running time of step 15	0.0–6553.5s (min)	0.0s
P10.34	Acceleration/deceleration time of 0–7 stage of simple PLC	0x0000-0xFFFF	0000
P10.35	Acceleration/deceleration time of 8–15 stage of simple PLC	0x0000-0xFFFF	0000

Function code	Name	Detailed parameter description	Default value
P10.36	PLC restart mode	O: Restart from step 0 in multi-step speed running 1: Continue running at the frequency when interruption occurred	0
P17.00	Set frequency	0.00Hz–P00.03 (Max. output frequency)	0.00Hz
P17.27	Simple PLC and current stage number of multi-step speed	0–15	0

5.5.14 Multi-step speed running

Set the parameters used in multi-step speed running. UMI-B7 VFD can set 16-step speeds, which are selectable by multi-step speed terminals 1–4, corresponding to multi-step speed 0 to multi-step speed 15.


Related parameter list:

Function	Name	Detailed negameter description	Default
code	Name	Detailed parameter description	value
		16: Multi-step speed terminal 1	
P05.01-	Digital input function	17: Multi-step speed terminal 2	
P05.01=	selection	18: Multi-step speed terminal 3	
1 03.00	Sciection	19: Multi-step speed terminal 4	
		20: Multi-step speed pause	
P10.02	Multi-step speed 0	-300.0–300.0%	0.0%
P10.03	Running time of step 0	0.0-6553.5s (min)	0.0s
P10.04	Multi-step speed 1	-300.0–300.0%	0.0%
P10.05	Running time of step 1	0.0-6553.5s (min)	0.0s
P10.06	Multi-step speed 2	-300.0–300.0%	0.0%
P10.07	Running time of step 2	0.0-6553.5s (min)	0.0s
P10.08	Multi-step speed 3	-300.0–300.0%	0.0%
P10.09	Running time of step 3	0.0–6553.5s (min)	0.0s
P10.10	Multi-step speed 4	-300.0–300.0%	0.0%
P10.11	Running time of step 4	0.0-6553.5s (min)	0.0s
P10.12	Multi-step speed 5	-300.0–300.0%	0.0%
P10.13	Running time of step 5	0.0-6553.5s (min)	0.0s
P10.14	Multi-step speed 6	-300.0–300.0%	0.0%
P10.15	Running time of step 6	0.0-6553.5s (min)	0.0s
P10.16	Multi-step speed 7	-300.0–300.0%	0.0%
P10.17	Running time of step 7	0.0-6553.5s (min)	0.0s
P10.18	Multi-step speed 8	-300.0–300.0%	0.0%
P10.19	Running time of step 8	0.0-6553.5s (min)	0.0s
P10.20	Multi-step speed 9	-300.0–300.0%	0.0%
P10.21	Running time of step 9	0.0-6553.5s (min)	0.0s
P10.22	Multi-step speed 10	-300.0–300.0%	0.0%
P10.23	Running time of step 10	0.0-6553.5s (min)	0.0s
P10.24	Multi-step speed 11	-300.0–300.0%	0.0%
P10.25	Running time of step 11	0.0-6553.5s (min)	0.0s
P10.26	Multi-step speed 12	-300.0–300.0%	0.0%
P10.27	Running time of step 12	0.0-6553.5s (min)	0.0s
P10.28	Multi-step speed 13	-300.0–300.0%	0.0%
P10.29	Running time of step 13	0.0–6553.5s (min)	0.0s
P10.30	Multi-step speed 14	-300.0–300.0%	0.0%
P10.31	Running time of step 14	0.0–6553.5s (min)	0.0s
P10.32	Multi-step speed 15	-300.0–300.0%	0.0%
P10.33	Running time of step 15	0.0–6553.5s (min)	0.0s
P10.34	Acceleration/decoration	0x0000-0XFFFF	0000

Function code	Name	Detailed parameter description	Default value
	time selection of 0-7		
	section of simple PLC		
	Acceleration/decoration	0x0000-0XFFFF	
P10.35	time selection of 8–15		0000
	section of simple PLC		
P17.27	Simple PLC and current	0–15	0
	steps of multi-step speed		

5.5.15 PID control

PID control, a common mode for process control, is mainly used to adjust the VFD output frequency or output voltage by performing scale-division, integral and differential operations on the difference between feedback signal of controlled variables and signal of the target, thus forming a negative feedback system to keep the controlled variables above the target. It is applicable to flow control, pressure control, temperature control, and so on. The following is the basic schematic block diagram for output frequency regulation.

Introduction to the working principles and control methods for PID control

Proportional control (Kp): When the feedback is different from the reference, the output will be proportional to the difference. If such a difference is constant, the regulating variable will also be constant. Proportional control can respond to feedback changes rapidly. However, it cannot eliminate the difference by itself. A larger proportional gain indicates a faster regulating speed, but a too large gain will result in oscillation. To solve this problem, set the integral time to a large value and the differential time to 0, run the system only with proportional control, and then change the reference to observe the difference (that is, static difference) between the feedback signal and reference. If the static difference occurs in the direction of reference change (such as reference increase, where the feedback is always less than the reference after system stabilizes), continue increasing the

proportional gain; otherwise, decrease the proportional gain. Repeat this process until the static difference becomes small.

Integral time (Ti): When feedback deviates from reference, the output regulating variable accumulates continuously, if the deviation persists, the regulating variable will increase continuously until deviation disappears. Integral regulator can be used to eliminate static difference; however, too large regulation may lead to repetitive overshoot, which will cause system instability and oscillation. The feature of oscillation caused by strong integral effect is that the feedback signal fluctuates up and down based on the reference variable, and fluctuation range increases gradually until oscillation occurs. Integral time parameter is generally regulated gradually from large to small until the stabilized system speed fulfills the requirement.

Derivative time (Td): When the deviation between feedback and reference changes, output the regulating variable which is proportional to the deviation variation rate, and this regulating variable is only related to the direction and magnitude of the deviation variation rather than the direction and magnitude of the deviation itself. Differential control is used to control the feedback signal variation based on the variation trend. Differential regulator should be used with caution as it may easily enlarge the system interferences, especially those with high variation frequency.

When frequency command selection (P00.06, P00.07) is 7, or channel of voltage setting (P04.27) is 6, the running mode of VFD is process PID control.

5.5.15.1 General procedures for PID parameter setting

a. Determining proportional gain P

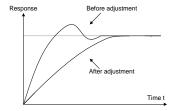
When determining proportional gain P, first, remove the integral term and derivative term of PID by making Ti=0 and Td=0 (see PID parameter setting for details), thus turning PID into pure proportional control. Set the input to 60%–70% of the max. allowable value and increase proportional gain P gradually from 0 until system oscillation occurred, and then in turn, decrease proportional gain P gradually from current value until system oscillation disappears, record the proportional gain P at this point and set the proportional gain P of PID to 60%–70% of current value. This is whole commissioning process of proportional gain P.

b. Determine integral time Ti

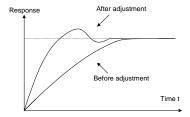
After proportional gain P is determined, set the initial value of a larger integral time Ti, and decrease Ti gradually until system oscillation occurred, and then in turn, increase Ti until system oscillation disappears, record the Ti at this point, and set the integral time constant Ti of PID to 150%–180% of current value. This is the commissioning process of integral time constant Ti.

c. Determining derivative time Td

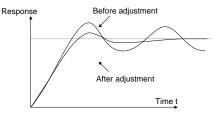
The derivative time Td is generally set to 0.


If you need to set Td to another value, set in the same way with P and Ti, namely set Td to 30% of the value when there is no oscillation.

d. Empty system load, perform load-carrying joint debugging, and then fine-tune PID parameter until fulfilling the requirement.


5.5.15.2 PID adjusting method

After setting the parameters controlled by PID, you can adjust these parameters by the following means.

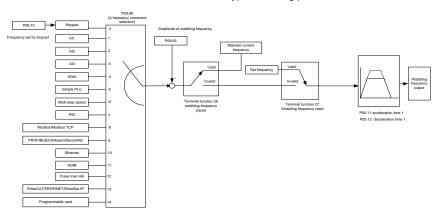

Control overmodulation: When overmodulation occurs, shorten the derivative time (Td) and prolong integral time (Ti).

Stabilize the feedback value as fast as possible: when overmodulation occurs, shorten integral time (Ti) and prolong derivative time (Td) to stabilize control as fast as possible.

Control long-term vibration: If the cycle of periodic vibration is longer than the set value of integral time (Ti), it indicates the integral action is too strong, prolong the integral time (Ti) to control vibration.

Control short-term vibration: If the vibration cycle is short is almost the same with the set value of derivative time (Td), it indicates derivative action is too strong, shortening the derivative time (Td) to control vibration. When derivative time (Td) is set to 0.00 (namely no derivative control), and there is no way to control vibration, decrease the proportional gain.

Related parameter list:


Function code	Name	Detailed parameter description	Default value
P09.00	PID reference source	0: Keypad (P09.01) 1: Al1 2: Al2 3: Al3 4: High-speed pulse HDIA 5: Multi-step 6: Modbus/Modbus TCP communication 7: CANopen communication 8: Ethernet communication 9: High-speed pulse HDIB 10: PROFINET/EtherNet IP communication 11: Programmable expansion card 12: Reserved	0
P09.01	Pre-set PID reference of keypad	-100.0%–100.0%	0.0%
P09.02	PID feedback source	0: Al1 1: Al2 2: Al3 3: High-speed pulse HDIA 4: Modbus/Modbus TCP communication 5: CANopen communication 6: Ethernet communication 7: High-speed pulse HDIB 8: PROFINET/EtherNet IP communication 9: Programmable expansion card 10: Reserved	0
P09.03	PID output characteristics	O: PID output is positive characteristic 1: PID output is negative characteristic	0
P09.04	Proportional gain (Kp)	0.00-100.00	1.80

Function code	Name	Detailed parameter description	Default value
P09.05	Integral time (Ti)	0.01-10.00s	0.90s
P09.06	Derivative time (Td)	0.00-10.00s	0.00s
P09.07	Sampling cycle (T)	0.001-1.000s	0.001s
P09.08	Limit of PID control deviation	0.0–100.0%	0.0%
P09.09	Upper limit value of PID output	P09.10–100.0% (max. frequency or voltage)	100.0%
P09.10	Lower limit value of PID output	-100.0%–P09.09 (max. frequency or voltage)	0.0%
P09.11	Feedback offline detection value	0.0–100.0%	0.0%
P09.12	Feedback offline detection time	0.0–3600.0s	1.0s
P09.13	PID control selection	0x0000–0x1111 Ones: 0: Continue integral control after the frequency reaches upper/lower limit 1: Stop integral control after the frequency reaches upper/lower limit Tens: 0: The same with the main reference direction 1: Contrary to the main reference direction Hundreds: 0: Limit as per the max. frequency 1: Limit as per A frequency Thousands: 0: A+B frequency, acceleration /deceleration of main reference A frequency source buffering is invalid 1: A+B frequency, acceleration/ deceleration of main reference A frequency source buffering is valid, acceleration/deceleration is determined by P08.04 (acceleration time 4).	0x0001
P09.14	Low frequency proportional gain (Kp)	0.00–100.00	1.00

Function code	Name	Detailed parameter description	Default value
P09.15	ACC/DEC time of PID command	0.0–1000.0s	0.0s
P09.16	PID output filter time	0.000-10.000s	0.000s
P09.17	Reserved	0–0	0
P09.18	Low frequency integral time (Ti)	0.00-10.00s	0.90s
P09.19	Low frequency differential time (Td)	0.00-10.00s	0.00s
P09.20	Low frequency point for PID parameter switching	0.00Hz-P09.21	5.00Hz
P09.21	High frequency point for PID parameter switching	P09.20-P00.03	10.00Hz
P17.00	Set frequency	0.00Hz–P00.03 (Max. output frequency)	0.00Hz
P17.23	PID reference value	-100.0–100.0%	0.0%
P17.24	PID feedback value	-100.0–100.0%	0.0%

5.5.16 Run at wobbling frequency

Wobbling frequency is mainly applied in cases where transverse movement and winding functions are needed like textile and chemical fiber industries. The typical working process is shown below.

Function code	Name	Detailed parameter description	Default value
P00.03	Max. output frequency	Max.(P00.04, 10.00) – 630.00Hz	60.00Hz
P00.06	A frequency command	0: Set via keypad	0
	selection	1: Set via AI1	U

Function code	Name	Detailed parameter description	Default value
		2: Set via Al2	
		3: Set via Al3	
		4: Set via high-speed pulse HDIA	
		5: Set via simple PLC program	
		6: Set via multi-step speed running	
		7: Set via PID control	
		8: Set via Modbus/Modbus TCP	
		communication	
		9: Set via CANopen communication	
		10: Set via Ethernet communication	
		11: Set via high speed pulse HDIB	
		12: Set via Pulse train AB	
		13: Set via	
		EtherCAT/PROFINET/EtherNet IP	
		communication	
		14: Set via programmable card	
P00.11	Acceleration time 1	0.0–3600.0s	Depends
1 00.11	Acceleration time 1	0.0-0000.03	on model
P00.12	Deceleration time 1	0.0–3600.0s	Depends
1 00.12	Deceleration time 1	0.0-3000.08	on model
		26: Wobbling frequency pause (stop at	
P05.01-	Digital input function	current frequency)	,
P05.06	selection	27: Wobbling frequency reset (revert to	,
		center frequency)	
P08.15	Amplitude of wobbling frequency	0.0-100.0% (relative to set frequency)	0.0%
D00.46	Amplitude of jump	0.0-50.0% (relative to amplitude of	0.00/
P08.16	frequency	wobbling frequency)	0.0%
P08.17	Wobbling frequency rise time	0.1–3600.0s	5.0s
P08.18	Wobbling frequency fall time	0.1–3600.0s	5.0s

5.5.17 Local encoder input

The UMI-B7 series VFD supports pulse count function by inputting the count pulse from HDI high-speed pulse port. When the actual count value is no less than the set value, digital output terminal will output count-value-reached pulse signal, and the corresponding count value will be zeroed out.

Function code	Name	Detailed parameter description	Default value
		0x00-0x11	
		Ones: HDIA input type	
		0: HDIA is high-speed pulse input	
P05.00	HDI input type	1: HDIA is digital input	0x00
		Tens: HDIB input type	
		0: HDIB is high-speed pulse input	
		1: HDIB is digital input	
	HDIA high-speed pulse input	0: Set input via frequency	
P05.38		1: Reserved	0
P05.36	function	2: Input via encoder, used in combination	U
		with HDIB	
		0: Set input via frequency	
P05 44	HDIB high-speed pulse	1: Reserved	0
F05.44	input function selection	2: Input via encoder, used in combination	
		with HDIA	
		0: PG card	
P20.15	Speed measurement mode	1: local; realized by HDIA and HDIB;	0
		supports incremental 24V encoder only	
P18.00		-999.9–3276.7Hz	
	Actual frequency of encoder	Note: P18.00 is displayed only in the V/F	0 0Hz
		and closed-loop modes, but not in the	3.5112
		open-loop mode.	

5.5.18 Commissioning procedures for closed-loop control, position control and spindle positioning

1. Commissioning procedures for closed-loop vector control of asynchronous motor

Step 1: Restore to default value via keypad

Step 2: Set P00.03, P00.04 and P02 group motor nameplate parameters

Step 3: Motor parameter autotuning

Carry out rotary parameter autotuning or static parameter autotuning via keypad. If the motor can be disconnected from load, then you can carry out rotary parameter autotuning; otherwise, carry out static parameter autotuning, the parameter obtained from autotuning will be saved in P02 motor parameter group automatically.

Step 4: Verify whether the encoder is installed and set properly

a) Confirm the encoder direction and parameter setting

Set P20.01 (encoder pulse-per-revolution), set P00.00=2 and P00.10=20.00Hz, and run the VFD, at this point, the motor rotates at 20.00Hz, observe whether the speed measurement value of

P18.00 is correct, if the value is negative, it indicates the encoder direction is reversed, under such situation, set P20.02 to 1; if the speed measurement value deviates greatly, it indicates P20.01 is set improperly. Observe whether P18.02 (encoder Z pulse count value) fluctuates, if yes, it indicates the encoder suffers interference or P20.01 is set improperly, requiring the check of the wiring and the shielding layer.

b) Determine Z pulse direction

Set P00.10=20.00Hz, and set P00.13 (running direction) to forward and reverse direction respectively to observe whether the difference value of P18.02 is less than 5, if the difference value remains to be larger than 5 after setting Z pulse reversal function of P20.02, power off and exchange phase A and phase B of the encoder, and then observe the difference between the value of P18.02 during forward and reverse rotation. Z pulse direction only affects the forward/reverse positioning precision of the spindle positioning carried out with Z pulse.

Step 5: Closed-loop vector pilot run

Set P00.00=3, and carry out closed-loop vector control, adjust P00.10 and speed loop and current loop PI parameter in P03 group to make it run stably in the whole range.

Step 6: Flux-weakening control

Set flux-weakening regulator gain P03.26=0–8000 and observe the flux-weakening control effect. P03.22–P03.24 can be adjusted as needed.

2. Commissioning procedures for closed-loop vector control of synchronous motor

Step 1: Set P00.18=1, restore to default value

Step 2: Set P00.00=3 (closed-loop vector control), set P00.03, P00.04, and motor nameplate parameters in P02 group.

Step 3: Set P20.00 and P20.01 encoder parameters

When the encoder is resolver-type encoder, set the encoder pulse count value to (resolver pole pair number × 1024), for example, if pole pair number is 4, set P20.01 to 4096.

Step 4: Ensure the encoder is installed and set correctly

When the motor stops, observe whether P18.21 (resolver angle) fluctuates, if it fluctuates sharply, check the wiring and grounding. Rotates the motor slowly, observe whether P18.21 changes accordingly. If yes, it indicates motor is connected correctly; if the value of P18.02 keeps constant at a non-zero value after rotating for multiple circles, it indicates encoder Z signal is correct.

Step 5: Autotuning of initial position of magnetic pole

Set P20.11=2 or 3 (3: rotary autotuning; 2: static autotuning), press RUN key to run the VFD.

a) Rotary autotuning (P20.11 = 3)

Detect the position of current magnetic pole when autotuning starts, and then accelerates to 10Hz, autotuning corresponding magnetic pole position of encoder Z pulse, and decelerate to stop.

During running, if ENC1o or ENC1d fault occurred, set P20.02=1 and carry out autotuning again.

After autotuning is done, the angle obtained from autotuning will be saved in P20.09 and P20.10 automatically.

b) Static autotuning

In cases where the load can be disconnected, it is recommended to adopt rotary autotuning (P20.11=3) as it has high angle precision. If the load cannot be disconnected, you can adopt static autotuning (P20.11=2). The magnetic pole position obtained from autotuning will be saved in P20.09 and P20.10.

Step 6: Closed-loop vector pilot run

Adjust P00.10 and speed loop and current loop PI parameter in P03 group to make it run stably in the whole range. If oscillation occurs, reduce the value of P03.00, P03.03, P03.09 and P03.10. If current oscillation noise occurred during low speed, adjust P20.05.

Note: It is necessary to re-determine P20.02 (encoder direction) and carry out magnetic pole position autotuning again if the wiring of motor or encoder is changed.

3. Commissioning procedures for pulse train control

Pulse input is operated based on closed-loop vector control; speed detection is needed in the subsequent spindle positioning, zeroing operation and division operation.

Step 1: Restore to default value by keypad

Step 2: Set P00.03, P00.04 and motor nameplate parameters in P02 group

Step 3: Motor parameter autotuning: rotary parameter autotuning or static parameter autotuning

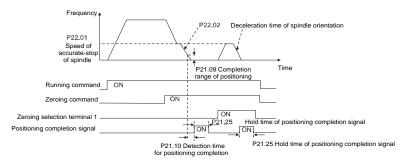
Step 4: Verity the installation and settings of encoder. Set P00.00=3 and P00.10=20Hz to run the system and check the control effect and performance of the system.

Step 5: Set P21.00=0001 to set positioning mode to position control, namely pulse-string control. There are four kinds of pulse command modes, which can be set by P21.01 (pulse command mode).

Under position control mode, you can check high bit and low bit of position reference and feedback, P18.02 (count value of Z pulse), P18.00 (actual frequency of encoder), P18.17 (pulse command frequency) and P18.19 (position regulator output) via P18, through which you can figure out the relation between P18.8 (position of position reference point) and P18.02, pulse command frequency P18.17, feedforward P18.18 and position regulator output P18.19.

Step 6: The position regulator has two gains, namely P21.02 and P21.03, and they can be switched by speed command, torque command and terminals.

Step 7: When P21.08 (output limit of position controller) is set to 0, the position control will be invalid, and at this point, the Pulse train acts as frequency source, P21.13 (position feedforward gain) should be set to 100%, and the speed acceleration/deceleration time is determined by the acceleration /deceleration time of Pulse train, the Pulse train acceleration/deceleration time of the system can be


adjusted. If the Pulse train acts as the frequency source in speed control, you can also set P21.00 to 0000, and set the frequency source reference P00.06 or P00.07 to 12 (set by Pulse train AB), at this point, the acceleration/deceleration time is determined by the acceleration/deceleration time of the VFD, meanwhile, the parameters of Pulse train AB is still set by P21 group. In speed mode, the filter time of Pulse train AB is determined by P21.29.

Step 8: The input frequency of Pulse train is the same with the feedback frequency of encoder pulse, the relation between them can be changed by altering P21.11 (numerator of position command ratio) and P21.12 (denominator of position command ratio)

Step 9: When running command or servo enabling is valid (by setting P21.00 or terminal function 63), it will enter Pulse train servo running mode.

4. Commissioning procedures for spindle positioning

Spindle orientation is to realize orientation functions like zeroing and division based on closed-loop vector control

Step 1–4: These four steps are the same with the first four steps of the commissioning procedures for closed-loop vector control, which aim to fulfill the control requirements of closed-loop vector control, thus realizing spindle positioning function in either position control or speed control mode.

Step 5: Set P22.00 bit0=1 to enable spindle positioning, set P22.00 bit1 to select spindle zero input. If the system adopts encoder for speed measurement, set P22.00 bit1 to 0 to select Z pulse input; if the system adopts photoelectric switch for speed measurement, set P22.00 bit1 to 1 to select photoelectric switch as zero input; set P22.00 bit2 to select zero search mode, set P22.00 bit3 to enable or disable zero calibration, and select zero calibration mode by setting P22.00 bit7.

Step 6: Spindle zeroing operation

- a) Select the positioning direction by setting P22.00 bit4;
- b) There are four zero positions in P22 group, you can choose one out of four zeroing positions by setting zeroing input terminal selection (46, 47) in P05 group. When executing zeroing function, the motor will stop accurately at corresponding zeroing position according to the set positioning direction, which can be viewed via P18.10;

c) The positioning length of spindle zeroing is determined by the deceleration time of accuratestop and the speed of accurate stop;

Step 7: Spindle division operation

There are seven scale-division positions in P22 group, you can choose one out of seven scale-division positions by setting scale-division input terminal selection (48, 49, 50) in P05 group. Enable corresponding scale-division terminal after the motor stops accurately, and the motor will check the scale-division position state and switch to corresponding position incrementally, at this point, you can check P18.09.

Step 8: Priority level of speed control, position control and zeroing

The priority level of speed running is higher than that of the scale division, when the system runs in scale-division mode, if spindle orientation is prohibited, the motor will turn to speed mode or position mode.

The priority level of zeroing is higher than that of the scale division.

Scale-division command is valid when the scale-division terminal is from 000 state to non-000 state, for example, in 000–011, the spindle executes scale division 3. The transition time during terminal switchover needs to be less than 10ms; otherwise, wrong scale division command may be executed.

Step 9: Hold positioning

The position loop gain during positioning is P21.03; while the position loop gain in positioning-completion-hold state is P21.02. To keep sufficient position-hold force and ensure no system oscillation occurred, adjust P03.00, P03.01, P20.05 and P21.02.

Step 10: Positioning command selection (bit6 of P22.00)

Electric level signal: Positioning command (zeroing and scale division) can be executed only when there is running command, or the servo is enabled.

Step 11: Spindle reference point selection (bit0 of P22.00)

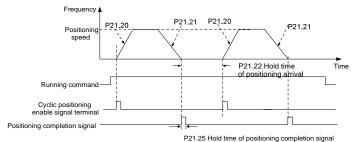
Encoder Z pulse positioning supports the following spindle positioning modes:

- a) the encoder is installed on the motor shaft, the motor shaft and spindle is 1:1 rigid connection;
- b) the encoder is installed on the motor shaft, the motor shaft and spindle is 1:1 belt connection;

At this point, the belt may slip during high-speed running and cause inaccurate positioning, it is recommended to install proximity switch on the spindle.

c) The encoder is installed on the spindle, and the motor shaft is connected to the spindle with belt, the drive ratio is not necessarily 1:1;

At this point, set P20.06 (speed ratio of the mounting shaft between motor and encoder), and set P22.14 (spindle drive ratio) to 1. As the encoder is not installed on the motor, the control performance of closed-loop vector will be affected.


Proximity switch positioning supports the following spindle positioning modes:

d) The encoder is installed on the motor shaft, the drive ratio between motor shaft and spindle is not necessarily 1:1;

At this point, it is required to set P22.14 (spindle drive ratio).

5. Commissioning procedures for digital positioning

The diagram for digital positioning is shown below.

Step 1-4: These four steps are the same as the first four steps of the commissioning procedures for closed-loop vector control, which aim to fulfill the control requirements of closed-loop vector control.

Step 5: Set P21.00=0011 to enable digital positioning. Set P21.17, P21.11 and P21.12 (set positioning displacement) according to actual needs; set P21.18 and P21.19 (set positioning speed); set P21.20 and P21.21 (set acceleration/deceleration time of positioning).

Step 6: Single positioning operation


Set P21.16 bit1=0, and the motor will carry out single positioning action and stay in the positioning position according to the setting in step 5.

Step 7: Cyclic positioning operation

Set P21.16 bit1=1 to enable cyclic positioning. The cyclic positioning is divided into continuous mode and repetitive mode; you can also carry out cyclic positioning through terminal function (no. 55, enable digital positioning cycle)

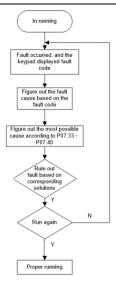
6. Commissioning procedures for positioning of photoelectric switch

Photoelectric switch positioning is to realize positioning function based on closed-loop vector control.

Step 1–4: These four steps are the same as the first four steps of the commissioning procedures for closed-loop vector control, which aim to fulfill the control requirements of closed-loop vector control.

Step 5: Set P21.00=0021 to enable photoelectric switch positioning, the photoelectric switch signal can be connected to S8 terminal only, and set P05.08=43, meanwhile, set P21.17, P21.11 and P21.12 (set positioning displacement) based on actual needs; set P21.21 (deceleration time of positioning), however, when present running speed is too fast or the set positioning displacement is too small, the deceleration time of positioning will be invalid, and it will enter direct deceleration positioning mode.

Step 6: Cyclic positioning


After positioning is done, the motor will stay in its current position. You can set cyclic positioning through input terminal function selection (55: enable cyclic digital positioning) in P05 group; when the terminal receives cyclic positioning enable signal (pulse signal), the motor will continue running in the set speed as per the speed mode and re-enter positioning state after encountering photoelectric switch.

(7) Hold positioning

The position loop gain during positioning is P21.03; while the position loop gain in positioning-completion-hold state is P21.02. To keep sufficient position-hold force and ensure no system oscillation occurred, adjust P03.00, P03.01, P20.05 and P21.02.

5.5.19 Fault handling

The following provides fault handling information.

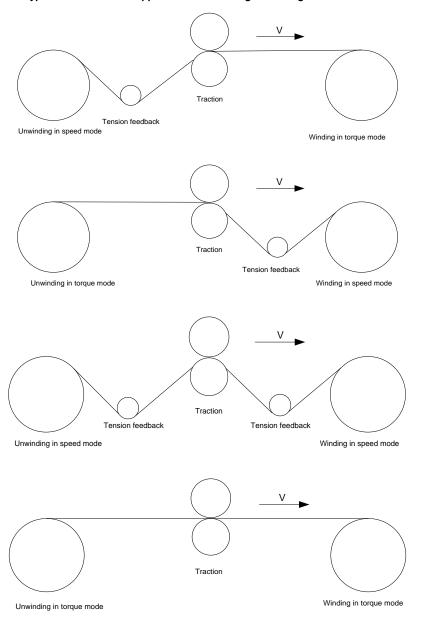
Related parameter list:

Function code	Name	Detailed parameter description	Default value
P07.27	Type of present fault	0: No fault	0
P07.28	Type of the last fault	1: VFD unit U phase protection (OUt1)	0
P07.29	Type of the 2nd-last fault	2: VFD unit V phase protection (OUt2)	0
P07.30	Type of the 3rd-last fault	3: VFD unit W phase protection (OUt3)	0
P07.31	Type of the 4th-last fault	4: Overcurrent during acceleration (OC1)	0
P07.32	Type of the 5th-last fault	5: Overcurrent during deceleration (OC2) 6: Overcurrent during constant speed (OC3) 7: Overvoltage during acceleration (OV1) 8: Overvoltage during deceleration (OV2) 9: Overvoltage during constant speed (OV3) 10: Bus undervoltage fault (UV) 11: Motor overload (OL1) 12: VFD overload (OL2) 13: Phase loss on input side (SPI) 14: Phase loss on output side (SPO) 15: Rectifier module overheat (OH1) 16: Inverter module overheat (OH2)	0

Function	Name	Detailed parameter description	Default
code		17: External fault (EE)	value
		17: External fault (EF) 18: Modbus/Modbus TCP	
		communication fault (CE)	
		19: Current detection fault (ItE)	
		20: Motor autotuning fault (tE)	
		21: EEPROM operation fault (EEP)	
		22: PID feedback offline fault (PIDE)	
		23: Brake unit fault (bCE)	
		24: Running time reached (END)	
		25: Electronic overload (OL3)	
		26: Keypad communication error (PCE)	
		27: Parameter upload error (UPE)	
		28: Parameter download error (DNE)	
		30: Ethernet communication fault (E-	
		NET)	
		31: CANopen communication fault (E-	
		CAN)	
		32: To-ground short-circuit fault 1	
		(ETH1)	
		33: To-ground short-circuit fault 2	
		(ETH2)	
		34: Speed deviation fault (dEu)	
		35: Mal-adjustment fault (STo)	
		36: Underload fault (LL)	
		37: Encoder offline fault (ENC1o)	
		38: Encoder reversal fault (ENC1d)	
		39: Encoder Z pulse offline fault	
		(ENC1Z)	
		40: Safe torque off (STO)	
		41: Channel H1 safety circuit exception	
		(STL1)	
		42: Channel H2 safety circuit exception	
		(STL2)	
		43: Channel H1 and H2 exception	
		(STL3)	
		44: Safety code FLASH CRC check fault	
		(CrCE)	
		55: Repetitive expansion card type fault	
		(E-Err)	

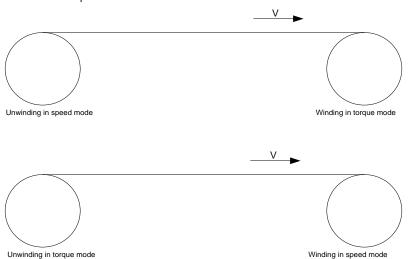
Function code	Name	Detailed parameter description	Default value
		56: Encoder UVW loss fault (ENCUV)	
		57: PROFINET communication timeout	
		fault (E-PN)	
		58: CAN communication fault (SECAN)	
		59: Motor over-temperature fault (OT)	
		60: Card slot 1 card identification failure	
		(F1-Er)	
		61: Card slot 2 card identification failure	
		(F2-Er)	
		62: Card slot 3 card identification failure	
		(F3-Er)	
		63: Card slot 1 card communication	
		timeout fault (C1-Er)	
		64: Card slot 2 card communication	
		timeout fault (C2-Er)	
		65: Card slot 3 card communication	
		timeout fault (C3-Er)	
		66: EtherCAT communication fault (E-	
		CAT)	
		69: Master-slave synchronous CAN	
		slave fault (S-Err)	
		70: EC PT100 detected overheating	
		(OtE1)	
		71: EC PT1000 detected overheating	
		(OtE2)	
		72: EtherNet/IP communication timeout	
		(E-EIP)	
		73: No upgrade bootload (E-PAO)	
		74: Al1 disconnected (E-Al1)	
		75: Al2 disconnected (E-Al2)	
		76: Al3 disconnected (E-Al3)	
		77: Al/AO detected overheating (OH3)	
		78: Brake feedback fault (E-brF)	
		79: Stalling in V/F control (E-StK)	
		80: Out-of-step in V/F control (E-LSt)	
P07.33	Running frequency at present fault	0.00Hz-P00.03	0.00Hz
	Ramp reference frequency	0.00Hz-P00.03	0.00Hz
P07.34	at present fault		

Function code	Name	Detailed parameter description	Default value
P07.35	Output voltage at present fault	0–1200V	0V
P07.36	Output current at present fault	0.0-6300.0A	0.0A
P07.37	Bus voltage at present fault	0.0–2000.0V	0.0V
P07.38	Max. temperature at present fault	-20.0–120.0°C	0.0°C
P07.39	Input terminal state at present fault	0x0000-0xFFFF	0
P07.40	Output terminal state at present fault	0x0000-0xFFFF	0
P07.41	Running frequency at the last fault	0.00Hz-P00.03	0.00Hz
P07.42	Ramp reference frequency at the last fault	0.00Hz-P00.03	0.00Hz
P07.43	Output voltage at the last fault	0–1200V	0V
P07.44	Output current at the last fault	0.0-6300.0A	0.0A
P07.45	Bus voltage at the last fault	0.0–2000.0V	0.0V
P07.46	Max. temperature at the last fault	-20.0–120.0°C	0.0°C
P07.47	Input terminal state at the last fault	0x0000-0xFFFF	0x0000
P07.48	Output terminal state at the last fault	0x0000-0xFFFF	0x0000
P07.49	Running frequency at the 2nd-last fault	0.00Hz-P00.03	0.00Hz
P07.50	Ramp reference frequency at the 2nd-last fault	0.00Hz-P00.03	0.00Hz
P07.51	Output voltage at the 2nd- last fault	0–1200V	0V
P07.52	Output current at the 2nd- last fault	0.0-6300.0A	0.0A
P07.53	Bus voltage at the 2nd-last fault	0.0–2000.0V	0.0V
P07.54	Max. temperature at the 2nd-last fault	-20.0–120.0°C	0.0°C


Function code	Name	Detailed parameter description	Default value
P07.55	Input terminal state at the 2nd-last fault	0x0000-0xFFFF	0x0000
P07.56	Output terminal state at the 2nd-last fault	0x0000-0xFFFF	0x0000

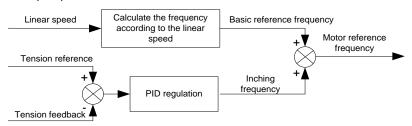
5.5.20 Tension control solutions

In many fields of industrial production, precise tension control is needed to maintain a constant output tension of the drive equipment, to improve the quality of the products. In the winding and unwinding of some industries such as paper processing, printing, and dyeing, packing, wire and cable manufacturing, textile, fiber, optic cable, leather, metal foil material processing and so on, tension needs to keep constant.


The VFD controls the tension by regulating the motor output torque or speed. There are three modes to control the tension: speed mode, open-loop torque mode and closed-loop torque mode.

5.5.20.1 Typical tension control applications for winding/unwinding

In some special situations, if the roll diameter can be counted through thickness, the following

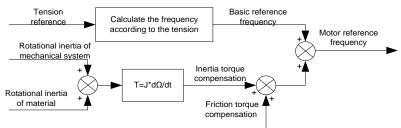

applications can be implemented:

5.5.20.2 Speed control

The detection feedback signal is needed in the closed-loop adjustment. PID calculation is carried out according to the feedback signal for the motor speed regulation, linear speed and stable tension control. If the tension rocker or floating roller is used for feedback, changing the set value (PID reference) may change the actual tension, and at the same time, changing the mechanical configuration such as the tension rocker or floating roller weight can also change the tension.

The control principle is as follows.

Related modules:


- (1) Linear speed input module: It is important for the calculation of the basic setting frequency according to the linear speed and the calculation of roll diameter according to the linear speed.
- (2) Real-time roll diameter calculation module: The calculation accuracy of roll diameter determines the control performance. The roll diameter can be calculated according to the VFD output frequency

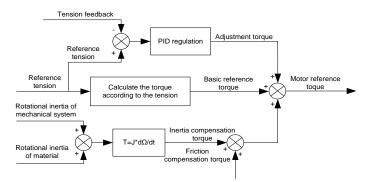
and the linear speed. In addition, it can also be calculated through the thickness or sensor. Linear speed is widely used for the calculation. If the set linear speed is used for the calculation, you can choose whether to enable the function of roll diameter change limiting.

- (3) PID regulation module: There are two groups of PID parameters in P09. The linear speed synchronization and stable tension can be kept through PID regulation. PID parameters can be modified based on site commissioning. The two groups of PID parameters can be switched for PID regulation improvement.
- (4) Material feeding interrupt detection and processing module: The function is valid when material feeding interrupt detection has been enabled.
- (5) Pre-drive: This function is applied to automatic reel change. After the VFD is started if the pre-drive function terminal is valid, the roller runs at the set linear speed. If the terminal is invalid, the VFD will automatically switch to the corresponding control mode after a period of time.

5.5.20.3 Open-loop torque mode

Open loop means there is no tension feedback signal. In this mode, stable tension can be achieved by means of motor torque control. The rotation speed automatically changes with the linear speed of material. The control basis is as follows: For a reel control system, the relationship between the tension F of the roller with materials, present roll diameter D and output torque of the shaft is: $T = F \times D/2$. If the output torque can be adjusted according to the variation of roll diameter, the tension can be controlled. In order to ensure the constant tension in the process of acceleration and deceleration, the internal friction compensation module and inertia compensation module have been built in the VFD to calculate the real time rotation inertia and compensate the torque according to the actual speed change rate. The control principle is shown in the following figure.

Relevant modes:


- (1) Linear speed input module: It has two functions: calculating the synchronous frequency in torque control according to the linear speed and calculating the roll diameter according to the linear speed.
- (2) Tension setting module: Used to set the tension adapting to the control system. It needs to be adjusted according to the actual situation. After confirmation, the value remains the same. In some scenarios where the forming effect after winding needs to be improved, the tension taper function can be used so that the tension decreases as the roll diameter increases.

(3) Real-time roll diameter calculation module: The calculation accuracy of roll diameter determines the control performance. The roll diameter can be calculated according to the VFD output frequency and the linear speed. In addition, it can also be calculated through the thickness or sensor. Linear speed is widely used for the calculation. If the set linear speed is used for the calculation, you can choose whether to enable the function of roll diameter change limiting.

- (4) Torque compensation module: Torque compensation include friction torque compensation and inertia torque compensation. Friction torque compensation is used to eliminate the impact of friction on tension, and it needs to be adjusted according to actual requirements. Rotation inertia includes inertial of mechanical systems and that of materials. To keep the tension stable in ACC/DEC, compensation torque is required. In some cases, without strict tension control requirements, disabling rotation inertia torque compensation can also achieve the control.
- (5) Material feeding interrupt detection and processing module: The function is valid when material feeding interrupt detection has been enabled.
- (6) This function is applied to automatic reel change. After the VFD is started if the pre-drive function terminal is valid, the roller runs at the set linear speed. If the terminal is invalid, the VFD will automatically switch to the corresponding control mode after a period of time.

5.5.20.4 Closed-loop torque mode

Like the open-loop torque mode, the closed-loop torque mode has only the difference that tension detection sensors are installed on the winding/unwinding side. In addition to all the function modules supported in open-loop torque mode, this mode supports an additional tension feedback PID closed-loop regulation module. The control principle is shown in the following figure.

6 Function parameter list

6.1 What this chapter contains

This chapter lists all the function codes and corresponding description of each function code.

6.2 Function parameter list

Function parameters of the UMI-B7 series VFD are categorized according to functions. Among the function groups, P98 is analog input/output calibration group, and P99 is factory function group which are user inaccessible. The function code adopts three-level menu, such as, "P08.08" indicates it is the no. 8 function code in P08 group.

The function group no. corresponds to the first-level menu; function code no. corresponds to the second-level menu; function code parameter corresponds to the third-level menu.

1. The function list is divided into the following columns.

Column 1 "Function code": number of the function parameter group and the parameter;

Colum 2 "Name": complete name of the function parameter;

Colum 3 "Detailed parameter description": detailed description of this function parameter;

Colum 4 "Default value": The original set value of the function parameter by default;

Colum 5: "Modify": The modification attribute of the function parameter, namely whether the function parameter can be modified and the condition for modification, as shown below.

"O": the set value of this parameter can be modified when the VFD is in stop or running state;

"O": the set value of this parameter cannot be modified when the VFD is in running state;

"•": the parameter value is the measured value which cannot be modified.

(The VFD automatically checks and constrains the modification of parameters, which helps prevent incorrect modifications.)

- "System of numeration for parameters" is decimal; if the parameter is presented in hexadecimal numbers, the data of each bit will be independent of each other during parameter edit, and the value range of partial bits can be 0–F in hexadecimal system.
- 3. "Default value" is value restored after parameter refresh during restoring to default value; however, the measured value or recorded value will not be refreshed.
- 4. To enhance parameter protection, the VFD provides the password protection function. After a user password is set (that is, P07.00 is set to a non-zero value), "0.0.0.0.0" is displayed when you press the PRG/ESC key to enter the function code editing interface, and you can enter the interface only with the correct user password. For the factory parameters, you need to enter the correct factory password to enter the interface. (You are not advised to modify the factory parameters. Incorrect parameter setting may cause operation exceptions or even damage to the VFD.) If password protection is not in a locked state, you can change the password any time. You can set P07.00 to 0 to cancel the user password. When P07.00 is set to a non-zero value during power-on, parameters are

prevented from being modified by using the user password function. When you modify function parameters through serial communication, the user password protection function is also applicable and compliant with the same rule.

P00 group—Basic functions

Function code	Name	Detailed parameter description	Default value	Modify
P00.00	Speed control mode	0: SVC 0 1: SVC 1 2: SVPWM 3: FVC Note: To select 0, 1, or 3 as the control mode, enable the VFD to perform motor parameter autotuning first	2	0
P00.01	Channel of running commands	0: Keypad 1: Terminal 2: Communication	0	0
P00.02	Communication mode of running commands	0: Modbus/Modbus TCP 1: CANopen 2: Ethernet 3: EtherCAT/PROFINET/EtherNet IP 4: Programmable card 5: Wireless communication card 6: Reserved Note: 1, 2, 3, 4 and 5 are extended functions which are applicable with corresponding cards.	0	0
P00.03	Max. output frequency	Used to set the maximum output frequency of the VFD. It is the basis of frequency setting and the acceleration/deceleration. Setting range: Max.(P00.04, 10.00) – 630.00Hz	60.00Hz	0
P00.04	Upper limit of running frequency	The upper limit of running frequency is upper limit value of VFD output frequency. This value cannot be more than the maximum output frequency. When the set frequency is higher than the upper limit frequency, the VFD runs at the upper limit frequency. Setting range: P00.05–P00.03 (Max. output frequency)	60.00Hz	©
P00.05	Lower limit of running frequency	The lower limit of running frequency is the lower limit value of VFD output frequency. When the set frequency is lower than the lower	0.00Hz	0

Function code	Name	Detailed parameter description	Default value	Modify
		limit frequency, the VFD runs at the lower limit frequency. Note: Max. output frequency ≥ upper limit frequency ≥ lower limit frequency. Setting range: 0.00Hz–P00.04 (upper limit of		
P00.06	A frequency command selection	running frequency) 0: Set via keypad 1: Set via Al1 2: Set via Al2	0	0
P00.07	B frequency command selection	3: Set via Al3 4: Set via high-speed pulse HDIA 5: Set via simple PLC program 6: Set via multi-step speed running 7: Set via PID control 8: Set via Modbus/Modbus TCP communication 9: Set via CANopen communication 10: Set via Ethernet communication 11: Set via high-speed pulse HDIB 12: Set via Pulse train AB 13: Set via EtherCAT/PROFINET/EtherNet IP communication 14: Set via programmable card 15: Reserved	15	0
P00.08	Reference object of B frequency command	0: Max. output frequency 1: A frequency command	0	0
P00.09	Combination mode of setting source	0: A 1: B 2: (A+B) 3: (A-B) 4: Max. (A, B) 5: Min. (A, B)	0	0
P00.10	Set frequency via keypad	When A and B frequency commands are set by keypad, the value is the initial digital set value of the VFD frequency. Setting range: 0.00 Hz–P00.03 (Max. output frequency)	60.00Hz	0
P00.11	Acceleration time 1	Acceleration time is the time needed for accelerating from 0Hz to Max. output frequency	Depends on model	0

Function code	Name	Detailed parameter description	Default value	Modify
P00.12	Deceleration time 1	(P00.03). Deceleration time is the time needed from decelerating from Max. output frequency (P00.03) to 0Hz. The VFD defines four groups of acceleration and deceleration time, which can be selected via multifunction digital input terminals (P05 group). The acceleration/deceleration time of the VFD is the first group by default. Setting range of P00.11 and P00.12: 0.0–3600.0s	Depends on model	0
P00.13	Running direction	Run in default direction Run in reverse direction Reverse running is prohibited	0	0
P00.14	Carrier frequency setting	Carrier frequency 1kHz 10kHz 15kHz 15kHz 10kHz 10kHz 10kHz 15kHz 10kHz 10kHz	Depends on model	0

Function code	Name	Detailed parameter description	Default value	Modify
		will increase, which increases electromagnetic		
		interference to the surroundings.		
		While low carrier frequency is the contrary. Low		
		carrier frequency will cause unstable operation at		
		low frequency, decrease the torque, or even lead		
		to oscillation.		
		The carrier frequency of VFD is set properly by		
		default, and it should not be changed at will.		
		If the default carrier frequency is exceeded during		
		use, derating is required, derate by 10% for every		
		additional 1k carrier frequency.		
		Setting range: 1.0–15.0kHz		
		0: No operation		
		1: Complete rotary parameter autotuning		
	Motor parameter autotuning	2: Complete static parameter autotuning		
D00.45		3: Partial static parameter autotuning		
P00.15		4: Complete rotary parameter autotuning 2 (for	0	0
		asynchronous motors)		
		5: Partial static parameter autotuning 2 (for		
		asynchronous motors)		
		0: Invalid		
	AVR function	1: Valid during the whole process		
P00.16		Automatic voltage regulation function is used to	1	0
		eliminate the impact on the output voltage of VFD		
		when bus voltage fluctuates.		
		0: No operation		
		1: Restore default values (excluding motor		
		parameters)		
		2: Clear fault records		
		3: Lock keypad parameters		
	Function	4: Reserved		
P00.18	parameter	5: Restore default values (for factory test mode)	0	0
F00.16	restoration	6: Restore default values (including motor	U	
	restoration	parameters)		
		Note: After the selected operation is done, this		
		parameter is automatically restored to 0. Restoring		
		the default values may delete the user password.		
		Exercise caution when using this function. The		
		option 5 can be used only for factory testing.		

P01 group—Start/stop control

Starting		•
P01.00 start Start after DC braking 2: Start after speed-tracking (with excitation) Starting frequency of direct startup is the initial frequency when the VFD starts. See P01.02 (hold time of starting frequency) for details. Setting range: 0.00–50.00Hz Output frequency finax Output frequency finax A proper starting frequency can increase the		
Starting frequency of direct start Starting frequency of direct start Starting frequency of direct startup is the initial frequency when the VFD starts. See P01.02 (hold time of starting frequency) for details. Setting range: 0.00–50.00Hz Output frequency fmax Output frequency fmax f1 set by P01.01 t1 set by P01.02 A proper starting frequency can increase the	0Hz	©
P01.01 frequency of direct start frequency when the VFD starts. See P01.02 (hold time of starting frequency) for details. Setting range: 0.00–50.00Hz Output frequency fin set by P01.01 t1 set by P01.02 A proper starting frequency can increase the	0Hz	©
frequency of direct start frequency when the VFD starts. See P01.02 (hold time of starting frequency) for details. Setting range: 0.00–50.00Hz Output frequency f1 set by P01.01 t1 set by P01.01 t1 set by P01.02	0Hz	©
direct start time of starting frequency) for details. Setting range: 0.00–50.00Hz Output frequency finax Output frequency finax fi set by P01.01 t1 set by P01.02 t A proper starting frequency can increase the	UHZ	
Setting range: 0.00–50.00Hz Output frequency fmax f1 set by P01.01 t1 set by P01.02 t A proper starting frequency can increase the		
f1 set by P01.01 t1 set by P01.02 t1 A proper starting frequency can increase the		
f1 set by P01.01 t1 set by P01.02 t A proper starting frequency can increase the		
t1 set by P01.02 t A proper starting frequency can increase the		
t1 set by P01.02 t A proper starting frequency can increase the		
Hold time of A proper starting frequency can increase the		
Hold time of A proper starting frequency can increase the		
Hold time of A proper starting frequency can increase the		
I Hold time of I''		
torque during startup. Within the hold time of	_	_
P01.02 starting starting frequency the output frequency of VFD is	.0s	0
frequency the starting frequency, and then it runs from the		
starting frequency to the target frequency, if the		
target frequency (frequency command) is below		
the starting frequency, the VFD will be standby		
rather than running. The starting frequency value		
is unlimited by the lower limit frequency.		
Setting range: 0.0–50.0s		
DC braking During starting, the VFD will first perform DC		
	0%	0
start before startup, and then it will accelerate after the		
set DC braking time before startup elapses. If the		
set DC braking time is 0, DC braking will be		
invalid.		
The larger the DC braking current, the stronger the		
P01.04 DC braking time braking force. The DC braking current before 0.0	00s	(O)
before start startup refers to the percentage relative to rated		_
VFD output current.		
Setting range of P01.03: 0.0–100.0%		
Setting range of P01.04: 0.00–50.00s		
This function code is used to select the frequency		
Acceleration/dec Variation mode during starting and running.	0	0
eleration mode 0: Straight line; the output frequency increases or		

Function code	Name	Detailed parameter description	Default value	Modify
		decreases in straight line; Output frequency f fmax 1: S curve; the output frequency increases or decreases in S curve. S curve is generally used in cases where smooth start/stop is required, such as elevator, conveyer belt, and so on. Output frequency f fmax Note: When set to 1, it is required to set P01.06, P01.07, P01.27 and P01.28 accordingly.		
P01.06	Time of starting section of acceleration S curve	The curvature of S curve is determined by acceleration range and acceleration and deceleration time. • Output frequency f	0.1s	0
P01.07	Time of ending section of acceleration S curve	t1=P01.06 t2=P01.07 t3=P01.27 t4=P01.28 Setting range: 0.0–50.0s	0.1s	0
P01.08	Stop mode	O: Decelerate to stop; after stop command is valid, the VFD lowers output frequency based on the deceleration mode and the defined deceleration time, after the frequency drops to the stop speed (P01.15), the VFD stops. 1: Coast to stop; after stop command is valid, the VFD stops output immediately, and the load coasts to stop as per mechanical inertia.	0	0
P01.09	Starting	Starting frequency of DC braking after stop; during	0.00Hz	0

Function code	Name	Detailed parameter description	Default value	Modify
	frequency of DC braking after stop	decelerating to stop, when this frequency is reached, DC braking will be performed after stop.		
P01.10	Waiting time of DC braking after stop	Demagnetization time (waiting time of DC braking after stop): Before the DC braking, the VFD will block output, and after the demagnetization time	0.00s	0
P01.11	DC braking current of stop	elapses, DC braking will start. This function is used to prevent overcurrent fault caused by DC braking	0.0%	0
P01.12	DC braking time of stop	during high speed. DC braking current after stop: it means the DC braking force applied, the larger the current, the stronger the DC braking effect. Acceleration Constant speed P01.09 P01.10 P01.12 P01.12 In running Setting range of P01.09: 0.00Hz—P00.03 (Max. output frequency) Setting range of P01.11: 0.00—30.00s Setting range of P01.11: 0.0—100.0% (of the rated VFD output current) Setting range of P01.12: 0.00—50.00s	0.00s	0
P01.13	Deadzone time of forward/reverse rotation	This function code refers to the transition time of the threshold set by P01.14 during setting forward/reverse rotation of the VFD, as shown below. Starting Forward Switch over after starting frequency Switch over after requency Switch	0.0s	0
P01.14	Forward/reverse rotation switchover mode	Switch over after zero frequency Switch over after starting frequency Switch over after passing stop speed and delay	1	0
P01.15	Stop speed	0.00–100.00Hz	0.50Hz	0

Function code	Name	Detailed parameter description	Default value	Modify
P01.16	Stop speed detection mode	Set value of speed (the only detection mode valid in V/F mode) Detection value of speed	0	0
P01.17	Stop speed detection time	0.00–100.00s	0.50s	0
P01.18	Running protection of power-on terminal	When the running command channel is controlled by terminals, the system will detect running terminal state automatically during power up. 0: Terminal running command is invalid during power up. The VFD will not run during power up even if the running command terminal is detected to be valid, and the system is in running protection state. The VFD will run only after this terminal is cancelled and enabled again. Note that the value takes effect only when P01.21 is also set to 0. 1: Terminal running command is valid during power up. The system will start the VFD automatically after initialization is done if the running command terminal is detected to be valid during power up. Note: This function must be set with caution; otherwise, serious consequences may occur.	0	0
P01.19	Action selected when running frequency less than frequency lower limit (valid when frequency lower limit greater than 0)	0x00–0x12 This parameter specifies the running status of VFD when the set frequency is below the lower limit. Ones place: Action selection 0: Run in lower limit of the frequency 1: Stop 2: Sleep Tens place: Stop mode 0: Coast to stop 1: Decelerate to stop The VFD stops as set in the tens place if the action selection is stop or sleep when the set frequency is below the lower limit. The VFD resumes the running state automatically when the set frequency is above the lower limit again and this situation lasts for the time set by P01.20. Setting range: 0x00–0x12	0x00	0
P01.20	Wake-up-from-	This function code is used to set the sleep delay.	0.0s	0

Function code	Name	Detailed parameter description	Default value	Modify
	sleep delay	When the running frequency of VFD is below the lower limit frequency, the VFD enters sleep state; when the set frequency is above the lower limit again and continues to be so after the time set by		
		P01.20 elapses, the VFD will run automatically. Set frequency curve: Running frequency curve:		
		Frequency1 t1 < P01.20, the VFD does not run t1+t2 ≥ P01.20, the VFD runs t0=P01.34, sieep delay FrequencyNower limit t0 1 1 1 12 FrequencyNower limit t0 Sieep Run Siepp Run		
		Setting range: 0.0–3600.0s (valid when the ones place of P01.19 is 2)		
P01.21	Restart after power down	This function code sets the automatic running of the VFD at next power-on after power down. 0: Disable restart 1: Enable restart, namely the VFD will run automatically after the time set by P01.22 elapses if the starting conditions are met.	0	0
P01.22	Waiting time of restart after power down	This function code sets the waiting time before automatically running at next power-on after power down. Output	1.0s	0
P01.23	Start delay	This function code sets the delay of the VFD's wake-up-from-sleep after running command is given, the VFD will start to run and output after the time set by P01.23 elapses to realize brake release. Setting range: 0.0–600.0s	0.0s	0
P01.24	Stop speed delay	0.0-600.0s	0.0s	0

Function code	Name	Detailed parameter description	Default value	Modify
P01.25	Open-loop 0Hz output selection	O: No voltage output I: With voltage output C: Output as per DC braking current of stop	0	0
P01.26	Deceleration time of emergency-stop	0.0–60.0s	2.0s	0
P01.27	Time of starting section of deceleration S curve	0.0–50.0s	0.1s	0
P01.28	Time of ending section of deceleration S curve	0.0–50.0s	0.1s	0
P01.29	Short-circuit braking current	When the VFD starts in direct start mode (P01.00=0), set P01.30 to a non-zero value to	0.0%	0
P01.30	Hold time of short-circuit braking at startup	enter short-circuit braking. During stop, if the running frequency of VFD is below the starting frequency of braking after stop,	0.00s	0
P01.31	Hold time of short-circuit braking at stop	set P01.31 to a non-zero value to enter short-circuit braking after stop, and then carry out DC braking in the time set by P01.12 (refer to P01.09–P01.12). Setting range of P01.29: 0.0–150.0% (of the rated VFD output current) Setting range of P01.30 and P01.31: 0.00–50.00s	0.00s	0
P01.32	Pre-exciting time of jogging	0-10.000s	0.300s	0
P01.33	Starting frequency of braking for jogging to stop	0.00Hz-P00.03	0.00Hz	0
P01.34	Delay to enter sleep	0.0–3600.0s	0.0s	0

P02 group—Parameters of motor 1

Function code	Name	Detailed parameter description	Default value	Modify
P02.00	Type of motor 1	0: Asynchronous motor	0	0

Function code	Name	Detailed parameter description	Default value	Modify
		1: Synchronous motor		
P02.01	Rated power of asynchronous motor 1	0.1–3000.0kW	Depends on model	0
P02.02	Rated frequency of asynchronous motor 1	0.01Hz–P00.03 (Max. output frequency)	60.00Hz	0
P02.03	Rated speed of asynchronous motor 1	1–60000rpm	1700rpm	0
P02.04	Rated voltage of asynchronous motor 1	0–1200V	Depends on model	0
P02.05	Rated current of asynchronous motor 1	0.8–6000.0A	Depends on model	0
P02.06	Stator resistance of asynchronous motor 1	0.001–65.535Ω	Depends on model	0
P02.07	Rotor resistance of asynchronous motor 1	0.001–65.535Ω	Depends on model	0
P02.08	Leakage inductance of asynchronous motor 1	0.1–6553.5mH	Depends on model	0
P02.09	Mutual inductance of asynchronous motor 1	0.1–6553.5mH	Depends on model	0
P02.10	No-load current of asynchronous motor 1	0.1–6553.5A	Depends on model	0
P02.11	Magnetic saturation coefficient 1 of iron core of asynchronous	0.0–100.0%	80.0%	0

Function code	Name	Detailed parameter description	Default value	Modify
	motor 1			
P02.12	Magnetic saturation coefficient 2 of iron core of asynchronous motor 1	0.0–100.0%	68.0%	0
P02.13	Magnetic saturation coefficient 3 of iron core of asynchronous motor 1	0.0–100.0%	57.0%	0
P02.14	Magnetic saturation coefficient 4 of iron core of asynchronous motor 1	0.0–100.0%	40.0%	0
P02.15	Rated power of synchronous motor 1	0.1–3000.0kW	Depends on model	0
P02.16	Rated frequency of synchronous motor 1	0.01Hz–P00.03 (Max. output frequency)	60.00Hz	0
P02.17	Number of pole pairs of synchronous motor 1	1–128	2	0
P02.18	Rated voltage of synchronous motor 1	0–1200V	Depends on model	0
P02.19	Rated current of synchronous motor 1	0.8–6000.0A	Depends on model	0
P02.20	Stator resistance of synchronous motor 1	0.001–65.535Ω	Depends on model	0

Function code	Name	Detailed parameter description	Default value	Modify
P02.21	Direct-axis inductance of synchronous motor 1	0.01–655.35mH	Depends on model	0
P02.22	Quadrature-axis inductance of synchronous motor 1	0.01–655.35mH	Depends on model	0
P02.23	Counter-emf constant of synchronous motor 1	0–10000	300	0
P02.24	Initial pole position of synchronous motor 1	0x0000-0xFFFF	0x0000	•
P02.25	Identification current of synchronous motor 1	0%–50% (of motor rated current)	10%	•
P02.26	Overload protection of motor 1	O: No protection 1: Common motor (with low-speed compensation). As the cooling effect of common motor will be degraded in low speed, the corresponding electronic thermal protection value should also be adjusted properly, the low compensation here means to lower the overload protection threshold of the motor whose running frequency is below 30Hz. 2: Frequency-variable motor (without low-speed compensation). As the cooling effect of frequency-variable motor is not affected by the rotating speed, there is no need to adjust the protection value during low-speed running.	2	©
P02.27	Overload protection coefficient of motor 1	Motor overload multiples M=lout/(lnxK) In is rated motor current, lout is VFD output current, K is motor overload protection coefficient. The smaller the K, the larger the value of M, and the easier the protection.	100.0%	0

Function code	Name	Detailed parameter description	Default value	Modify
		When M=116%, protection is performed after motor overload lasts for 1 hour; when M=150%, protection is performed after motor overload lasts for 12 minutes; when M=180%, protection is performed after motor overload lasts for 5 minutes; when M=200%, protection is performed after motor overload lasts for 60 seconds; and when M≥ 400%, protection is performed immediately. Time (min) Current overload 118% 150% 180% 200% Setting range: 20.0%—150.0%		
	Power display	This function adjusts the power display value of		
P02.28	calibration coefficient of motor 1	motor 1 only, and it does not affect the control performance of the VFD. Setting range: 0.00–3.00	1.00	0
P02.29	Parameter display of motor 1	O: Display as per motor type; under this mode, only parameters related to current motor type will be displayed. I: Display all; under this mode, all the motor parameters will be displayed.	0	0
P02.30	System inertia of motor 1	0.000–30.000kgm²	0.000 kgm²	0
P02.31- P02.32	Reserved			

P03 group—Vector control of motor 1

Function code	Name	Detailed parameter description	Default value	Modify
P03.00		Parameters of P03.00–P03.05 fit for vector control mode only. Below P03.02, speed loop PI	20.0	0
P03.01	Speed loop integral time 1	parameter is P03.00 and P03.01; above P03.06, speed loop PI parameter is P03.03 and P03.04; in	0.200s	0

Function code	Name	Detailed parameter description	Default value	Modify
P03.02	Switch low point frequency	between, PI parameter is obtained by linear variation between two groups of parameters, as	5.00Hz	0
P03.03	Speed loop proportional gain 2	shown below. PI parameter P03.00, P03.01	20.0	0
P03.04	Speed loop integral time 2	F03.00, F03.01	0.200s	0
P03.05	Switch over high point frequency	P03.03, P03.04 Putput frequency f P03.02 P03.05 The speed loop dynamic response characteristics of vector control can be adjusted by setting the proportional coefficient and integral time of speed regulator. Increase proportional gain or decrease integral time can accelerate dynamic response of speed loop, however, if the proportional gain is too large or integral time is too small, system oscillation and overshoot may occur; if proportional gain is too small, stable oscillation or speed offset may occur. Speed loop PI parameter is closely related to the system inertial, you should make adjustment based on default PI parameter according to different load characteristics to fulfill different needs. Setting range of P03.00:0.0–200.0 Setting range of P03.01: 0.000–10.000s Setting range of P03.02: 0.00Hz–P03.05 Setting range of P03.03: 0.0–200.0 Setting range of P03.04: 0.000–10.000s Setting range of P03.05: P03.02–P00.03 (Max. output frequency)	10.00Hz	0
P03.06	Speed loop output filter	0-8 (corresponds to 0-2^8/10ms)	0	0
P03.07	Vector control slip compensation coefficient	Slip compensation coefficient is used to adjust the slip frequency of vector control to improve speed control precision. This parameter can be used to	100%	0

Function code	Name	Detailed parameter description	Default value	Modify
	(motoring)	control speed offset.		
P03.08	Vector control slip compensation coefficient (generating)	Setting range: 50–200%	100%	0
P03.09	Current loop proportional coefficient P	Note: 1. These two parameters are used to adjust PI parameters of current loop; it affects dynamic	1000	0
P03.10	Current loop integral coefficient I	response speed and control precision of the system directly. The default value needs no adjustment under common conditions; 2. Applicable to SVC mode 0 (P00.00=0), SVC mode 1 (P00.00=1), and FVC (P00.00=3) Setting range: 0–65535	1000	0
P03.11	Torque setting mode selection	0–1: Keypad (P03.12) 2: Al1 3: Al2 4: Al3 5: Pulse frequency HDIA 6: Multi-step torque 7: Modbus/Modbus TCP communication 8: CANopen communication 9: Ethernet communication 10: Pulse frequency HDIB 11: EtherCAT/PROFINET/EtherNet IP 12: Programmable card Note: For these settings, 100% corresponds to the motor rated current.	0	0
P03.12	Torque set by keypad	-300.0%–300.0% (of the motor rated current)	20.0%	0
P03.13	Torque reference filter time	0.000–10.000s	0.010s	0
P03.14	Setting source of FWD rotation frequency upper limit in torque control	0: Keypad (P03.16) 1: Al1 2: Al2 3: Al3 4: Pulse frequency HDIA 5: Multi-step setting	0	0

Function code	Name	Detailed parameter description	Default value	Modify
		6: Modbus/Modbus TCP communication 7: CANopen communication 8: Ethernet communication 9: Pulse frequency HDIB 10: EtherCAT/PROFINET/EtherNet IP communication 11: Programmable card 12: Reserved Note: For these settings, 100% corresponds to the		
P03.15	Setting source of REV rotation frequency upper limit in torque control	max. frequency. 0: Keypad (P03.17) 1: Al1 2: Al2 3: Al3 4: Pulse frequency HDIA 5: Multi-step setting 6: Modbus/Modbus TCP communication 7: CANopen communication 8: Ethernet communication 9: Pulse frequency HDIB 10: EtherCAT/PROFINET/EtherNet IP communication 11: Programmable card 12: Reserved Note: For these settings, 100% corresponds to the max. frequency.	0	0
P03.16	FWD rotation frequency upper limit set through keypad in torque control	Used to specify frequency limits. 100% corresponds to the max. frequency. P03.16 specifies the upper-limit frequency when	60.00Hz	0
P03.17	REV rotation frequency upper limit set through keypad in torque control	P03.14=1; P03.17 specifies the upper-limit frequency when P03.15=1. Setting range: 0.00Hz–P00.03 (Max. output frequency)	60.00Hz	0
P03.18	Setting source of electromotive torque upper limit	0: Keypad (P03.20) 1: Al1 2: Al2	0	0

Function code	Name	Detailed parameter description	Default value	Modify
		3: Al3		
		4: Pulse frequency HDIA		
		5: Modbus/Modbus TCP communication		
		6: CANopen communication		
		7: Ethernet communication		
		8: Pulse frequency HDIB		
		9: EtherCAT/PROFINET/EtherNet IP		
		communication		
		10: Programmable card		
		11: Reserved		
		Note: For these settings, 100% corresponds to the		
		motor rated current.		
		0: Keypad (P03.21)		
		1: Al1		
		2: AI2		
		3: AI3		
		4: Pulse frequency HDIA		
		5: Modbus/Modbus TCP communication		
	Setting source of	6: CANopen communication		
P03.19	braking torque	7: Ethernet communication	0	0
	upper limit	8: Pulse frequency HDIB		
		9: EtherCAT/PROFINET/EtherNet IP		
		communication		
		10: Programmable card		
		11: Reserved		
		Note: For these settings, 100% corresponds to the		
		motor rated current.		
	Electromotive			
B00 00	torque upper limit		100.00/	
P03.20	set through	Used to set torque limits.	180.0%	0
	keypad	Setting range: 0.0–300.0% (of the motor rated		
	Braking torque	current)		
P03.21	upper limit set		180.0%	0
	through keypad			
	Flux-weakening			
	coefficient of			
P03.22	constant-power	Used when asynchronous motor is in flux-	0.3	0
	zone	weakening control.		
P03.23	Min. flux-		20%	0
F 00.20	IVIII I. IIUX-	-150-	ZU /0	

Function code	Name	Detailed parameter description	Default value	Modify
Code	weakening point	↑ _T	value	
	of constant-power			
	zone			
	ZONC	Flux-weakening coefficient of motor		
		0.1		
		1.0		
		2.0		
		Min. flux-weakening limit of motor		
		P03.22 and P03.23 are valid during constant		
		power. When motor speed is above rated speed,		
		motor enters flux-weakening running state. The		
		flux-weakening control coefficient can change the		
		flux-weakening curvature, the larger the		
		coefficient, the steeper the curve, the smaller the		
		coefficient, the smoother the curve.		
		Setting range of P03.22: 0.1–2.0		
		Setting range of P03.23: 10%–100%		
		P03.24 sets the maximum output voltage of the		
		VFD, which is the percentage of rated motor		
P03.24	Max. voltage limit	voltage. This value should be set according to field	100.0%	0
		conditions.		
		Setting range:0.0–120.0%		
		Carry out motor pre-exciting during starting to build		
P03.25	Pre-exciting time	a magnetic field inside the motor to improve the	0.300s	0
. 00.20		torque characteristics of motor during starting.	0.000	
		Setting range: 0.000–10.000s		
P03.26	Flux-weakening	0-8000	1000	0
	proportional gain			
P03.27	Vector control	0: Display as per the actual value	0	0
	speed display	1: Display as per the set value		
D00.00	Static friction	0.0.400.00/	0.00/	
P03.28	compensation	0.0–100.0%	0.0%	0
	coefficient			
D02.20	Corresponding	0.50, D02.24	1 001 1-	
P03.29	frequency point	0.50-P03.31	1.00Hz	0
	of static friction			
D02.20	High speed	0.0.100.09/	0.00/	
P03.30	friction	0.0–100.0%	0.0%	0
	compensation			

Function code	Name	Detailed parameter description	Default value	Modify
	coefficient			
P03.31	Corresponding frequency of high-speed friction torque	P03.29–599.00Hz	50.00Hz	0
P03.32	Enabling torque control	0: Disable 1: Enable	0	0
P03.33	Flux weakening integral gain	0–8000	1200	0
P03.34	Flux-weakening control mode	0x000-0x112 Ones place: Control mode 0: Mode 0 1: Mode 1 2: Mode 2 Tens place: Compensation of inductance saturation coefficient 0: Enable 1: Disable Hundreds place: Reserved 0: Reserved 1: Reserved	0x000	0
P03.35	Control optimization setting	0x0000–0x1111 Ones place: Torque command selection 0: Torque reference 1: Torque current reference Tens place: Reserved 0: Reserved 1: Reserved Hundreds place: Whether to enable ASR integral separation 0: Disable 1: Enable Thousands place: Reserved 0: Reserved 1: Reserved	0x0000	0
P03.36	Speed loop differential gain	0.00–10.00s	0.00s	0
P03.37	High-frequency	In FVC (P00.00=3), when the frequency is lower	1000	0

Function code	Name	Detailed parameter description	Default value	Modify
	current loop	than the ACR high-frequency switching threshold		
	proportional	(P03.39), the ACR PI parameters are P03.09 and		
	coefficient	P03.10; and when the frequency is higher than the		
	High-frequency	ACR high-frequency switching threshold (P03.39),		
P03.38	current loop	the ACR PI parameters are P03.37 and P03.38.	1000	0
. 55.55	integral	Setting range of P03.37: 0–65535	.000	
	coefficient	Setting range of P03.38: 0–65535		
	Current loop	Setting range of P03.39: 0.0–100.0% (relative to		
P03.39	high-frequency	max. frequency)	100.0%	0
	switchover point			
P03.40	Enabling inertia	0: Disable	0	0
1 00.10	compensation	1: Enable		Ŭ
	Upper limit of	Limit the max. inertia compensation torque to		
P03.41	inertia	prevent inertia compensation torque from being	10.0%	0
1 00.11	compensation	too large.	10.070	
	torque	Setting range: 0.0–150.0% (rated motor torque)		
	Inertia	Filter times of inertia compensation torque, used to		
P03.42	compensation	smooth inertia compensation torque.	7	0
	filter times	Setting range: 0–10		
	Inertia	Due to friction force, it is required to set certain		
P03.43	identification	identification torque for the inertia identification to	10.0%	0
1 00.40	torque value	be performed properly.	10.070	
	torquo varuo	0.0–100.0% (rated motor torque)		
P03.44	Enable inertia	0: No operation	0	0
1 00.44	identification	1: Start identification	•	
		Automatic update will be performed after motor		
	Current loop	parameter autotuning. In the closed-loop vector		
	proportional	control mode for synchronous motors, you can set		
P03.45	coefficient after	the value of this function code to P03.09.	0	•
	autotuning	Range: 0-65535		
	adiotaling	Note: Set the value to 0 if motor parameter		
		autotuning is not performed.		
		Automatic update will be performed after motor		
	Current integral	parameter autotuning. In the closed-loop vector		
	proportional	control mode for synchronous motors, you can set		
P03.46	coefficient after	the value of this function code to P03.10.	0	•
	autotuning	Range: 0–65535		
	~~	Note: Set the value to 0 if motor parameter		
		autotuning is not performed.		

Function code	Name	Detailed parameter description	Default value	Modify
P03.47	SVC1 optimized mode for asynchronous motors	0–2 0: Common mode 1: Optimized mode 1 (reserved) 2: Optimized mode 2	0	0
P03.48	SVC1 speed filter coefficient	0–200	50	0
P03.49	Current loop proportional coefficient	0–5000	1000	0
P03.50	Regulation function in optimized mode	0x0000–0x2114 Ones place: Pre-excitation selection 0: Pre-excitation is invalid 1: Perform automatic pre-excitation by rotator time constant 2: Perform automatic pre-excitation loop-closing by rotator time constant 3: Perform pre-excitation for the time specified by P03.25 4: Perform pre-excitation loop-closing for the time specified by P03.25 Tens place: Speed loop proportional integral separation selection 0: No separation 1: Separation Hundreds place: Min. frequency limit at stalling in torque mode 0: Limit is valid 1: No limit Thousands place: Speed loop output max. limit value (reserved) 0–2: Reserved	0x0011	©
P03.51- P03.52	Reserved			
P03.53	Zero drift handling	0–0 0: Perform zero drift detection at stop	0	0
P03.54	Enabling energy- saving control in SVC1 for asynchronous	0-1 0: Disable 1: Enable	0	0

Function code	Name	Detailed parameter description	Default value	Modify
	motors			
P03.55	Min. limit value for energy-saving control in vector control	0.0–100.0%	40.0%	0
P03.56	Gain coefficient for energy-saving control in vector control	0.0–400.0%	100.0%	0

P04 group—V/F control

Function code	Name	Detailed parameter description	Default value	Modify
P04.00	V/F curve setting of motor 1	This function code defines the V/F curve of motor 1 to satisfy different load characteristics needs. 0: Straight V/F curve; fit for constant-torque load 1: Multi-point V/F curve 2: Torque down V/F curve (power of 1.3) 3: Torque down V/F curve (power of 1.7) 4: Torque down V/F curve (power of 2.0) Curves 2–4 are suitable for torque-variable load of fan pump and similar equipment. You can make adjustment based on load characteristics to achieve optimal energy-saving effect. 5: Customized V/F (V/F separation); under this mode, V is separated from f. You can adjust f through the frequency reference channel set by P00.06 to change the curve characteristic, or adjust V through the voltage reference channel set by P04.27 to change the curve characteristics. Note: The V _b in the figure below corresponds to rated motor frequency. Output voltage V _b Torque step-down V/F curve (power of 1.3) Torque step-down V/F curve (power of 1.7) Torque step-down V/F curve (power of 1.7) Torque step-down V/F curve (power of 2.0) Quiput frequency	0	•
P04.01	Torque boost of	In order to compensate for low-frequency torque	0.0%	0

Function code	Name	Detailed parameter description	Default value	Modify
	motor 1	characteristics, you can make some boost		
P04.02	Motor 1 torque boost cut-off	compensation to the output voltage. P04.01 is relative to the maximum output voltage V _b . P04.02 defines the percentage of cut-off frequency of manual torque boost to the rated motor frequency f _b . Torque boost can improve the low-frequency torque characteristics of V/F. You should select torque boost based on the load, For example, larger load requires larger torque boost, however, if the torque boost is too large, the motor will run at over-excitation, which will cause increased output current and motor heat-up, thus degrading the efficiency. When torque boost is set to 0.0%, the VFD is automatic torque boost. Torque boost cut-off threshold: Below this frequency threshold, the torque boost is valid, exceeding this threshold will nullify torque boost. Output voltage V _b Output voltage Toutput voltage Output voltage V _b Setting range of P04.01: 0.0%: (automatic); 0.1%—10.0% Setting range of P04.02: 0.0%—50.0%	20.0%	0
P04.03	V/F frequency point 1 of motor 1		0.00Hz	0
P04.04	V/F voltage point 1 of motor 1	When P04.00 =1 (multi-point V/F curve), you can set V/F curve via P04.03–P04.08.	00.0%	0
P04.05	V/F frequency point 2 of motor 1	V/F curve is usually set according to the characteristics of motor load.	0.00Hz	0
P04.06	V/F voltage point 2 of motor 1	Note: V1 <v2<v3, burnt-<="" f1<f2<f3.="" high,="" if="" is="" low-frequency="" motor="" or="" overheat="" set="" td="" too="" voltage=""><td>0.0%</td><td>0</td></v2<v3,>	0.0%	0
P04.07	V/F frequency point 3 of motor 1	down may occur, and overcurrent stall or overcurrent protection may occur to the VFD.	0.00Hz	0
P04.08	V/F voltage point		00.0%	0

Function code	Name	Detailed parameter description	Default value	Modify
	3 of motor 1	Setting range of P04.03: 0.00Hz–P04.05 Setting range of P04.04: 0.0%–110.0% (rated voltage of motor 1) Setting range of P04.06: 0.0%–110.0% (rated voltage of motor 1) Setting range of P04.07: P04.05–P02.02 (rated voltage of motor 1) Setting range of P04.07: P04.05–P02.02 (rated frequency of asynchronous motor 1) or P04.05–P02.16 (rated frequency of synchronous motor 1) Setting range of P04.08: 0.0%–110.0% (rated voltage of motor 1)		
P04.09	V/F slip compensation gain of motor 1	voltage of motor 1) This parameter is used to compensate for the motor rotating speed change caused by load change in the SVPWM mode, and thus improve the rigidity of the mechanical characteristics of the motor. You need to calculate the rated slip frequency of the motor as follows: △f=fb-n×p/60 where fb is the rated frequency of motor 1, corresponding to P02.02; n is the rated speed of motor 1, corresponding to P02.03; p is the number of pole pairs of motor 1. 100% corresponds to the rated slip frequency △f of motor 1. Setting range: 0.0–200.0%	100.0%	0
P04.10	Low-frequency oscillation control factor of motor 1	In SVPWM mode, the motor, especially the large- power motor may experience current oscillation during certain frequencies, which may lead to	10	0
P04.11	High-frequency	unstable motor operation, or even VFD overcurrent, you can adjust these two parameters properly to eliminate such phenomenon.	10	0
P04.12	Oscillation control threshold of		30.00Hz	0

Function code	Name	Detailed parameter description	Default value	Modify
	motor 1	Setting range of P04.12: 0.00Hz–P00.03 (Max. output frequency)		
P04.13	V/F curve setting of motor 2	This parameter defines the V/F curve of motor 2 of the UMI-B7 series to meet various load characteristic requirements. 0: Straight V/F curve 1: Multi-point V/F curve 2: Torque-down V/F curve (power of 1.3) 3: Torque-down V/F curve (power of 1.7) 4: Torque-down V/F curve (power of 2.0) 5: Customize V/F (V/F separation)	0	0
P04.14	Torque boost of motor 2	Note: Refer to the parameter description of P04.01 and P04.02.	0.0%	0
P04.15	Torque boost cut- off of motor 2	Setting range of P04.14: 0.0%: (automatic); 0.1%–10.0% Setting range of 0.0%–50.0% (relative to rated frequency of motor 2)	20.0%	0
P04.16	V/F frequency point 1 of motor 2	Note: Refer to the parameter description of P04.03–P04.08	0.00Hz	0
P04.17		Setting range of P04.16: 0.00Hz–P04.18 Setting range of P04.17:0.0%–110.0% (rated	00.0%	0
P04.18	V/F frequency point 2 of motor 2	voltage of motor 2) Setting range of P04.18: P04.16–P04.20	0.00Hz	0
P04.19		Setting range of P04.19: 0.0%–110.0% (rated voltage of motor 2)	00.0%	0
P04.20	V/F frequency point 3 of motor 2	Setting range of P04.20: P04.18–P12.02 (rated frequency of asynchronous motor 2) or P04.18–	0.00Hz	0
P04.21	V/F voltage point 3 of motor 2	P12.16 (rated frequency of synchronous motor 2) Setting range of P04.21:0.0%–110.0% (of the rated voltage of motor 2)	00.0%	0
P04.22	V/F slip compensation gain of motor 2	This parameter is used to compensate for the motor rotating speed change caused by load change in the SVPWM mode, and thus improve the rigidity of the mechanical characteristics of the motor. You need to calculate the rated slip frequency of the motor as follows: $\Delta f = f_b - n^* p/60$ where f_b is the rated frequency of motor 2,	0.0%	0

Function code	Name	Detailed parameter description	Default value	Modify
		corresponding to P12.02; n is the rated speed of		
		motor 2, corresponding to P12.03; p is the number		
		of pole pairs of motor 2. 100% corresponds to the		
		rated slip frequency ∆f of motor 2.		
		Setting range: 0.0–200.0%		
	Low-frequency	In the SVPWM mode, current oscillation may		
P04.23	oscillation control	easily occur on motors, especially large-power	10	0
	factor of motor 2	motors, at some frequency, which may cause		
	High-frequency	unstable running of motors or even overcurrent of		
P04.24	oscillation control	VFDs. You can modify this parameter to prevent	10	0
	factor of motor 2	current oscillation.		
	Oscillation control	Setting range of P04.23: 0–100		
P04.25	Oscillation control threshold of	Setting range of P04.24: 0–100	30 00H-	0
P04.25	motor 2	Setting range of P04.25: 0.00 Hz–P00.03 (Max.	30.00Hz	0
	motor 2	output frequency)		
	Energy-saving run	0: No action		
		1: Automatic energy-saving operation		
P04.26		Under light-load state, the motor can adjust the	0	0
		output voltage automatically to achieve energy-		
		saving purpose		
		0: Keypad; output voltage is determined by P04.28		
		1: Al1		
		2: AI2		
		3: Al3		
		4: HDIA		
		5: Multi-step (the set value is determined by P10		
	Voltage setting	group)		
P04.27	channel	6: PID	0	0
	channer	7: Modbus/Modbus TCP communication		
		8: CANopen communication		
		9: Ethernet communication		
		10: HDIB		
		11: EtherCAT/PROFINET/EtherNet IP		
		12: Programmable card		
		13: Reserved		
		When the keypad is set as the voltage setting		
P04.28	Voltage value set	channel, the value of this parameter is used as the	100.0%	0
FU4.28	through keypad	voltage value.	100.0%	
		Setting range: 0.0%–100.0%		

Function code	Name	Detailed parameter description	Default value	Modify
P04.29	Voltage increase time	Voltage increase time means the time needed from outputting the min. voltage to accelerating to	5.0s	0
P04.30	Voltage decrease time	output the max. voltage. Voltage decrease time means the time needed from outputting max. voltage to outputting the min. voltage Setting range: 0.0–3600.0s	5.0s	0
P04.31	Output max. voltage	Set the upper/lower limit value of output voltage.	100.0%	0
P04.32	Output min. voltage	Vmax	0.0%	©
P04.33	Flux-weakening coefficient in the constant power zone	1.00–1.30	1.00	0
P04.34	Pull-in current 1 in synchronous motor VF control	When the synchronous motor VF control mode is enabled, this parameter is used to set the reactive current of the motor when the output frequency is lower than the frequency set in P04.36. Setting range: -100.0%—+100.0% (of the rated current of the motor)	20.0%	0
P04.35	Pull-in current 2 in synchronous motor VF control	When the synchronous motor VF control mode is enabled, this parameter is used to set the reactive current of the motor when the output frequency is higher than the frequency set in P04.36. Setting range: -100.0%—+100.0% (of the rated current of the motor)	10.0%	0
P04.36	Frequency threshold for input current switching in synchronous motor VF control	When the synchronous motor VF control mode is enabled, this parameter is used to set the frequency threshold for the switching between input current 1 and input current 2. Setting range: 0.0%–200.0% (of the motor rated frequency	20.0%	0

Function code	Name	Detailed parameter description	Default value	Modify
P04.37	Reactive current closed-loop proportional coefficient in synchronous motor VF	When the synchronous motor VF control mode is enabled, this parameter is used to set the proportional coefficient of the reactive current closed-loop control. Setting range: 0–3000	50	0
P04.38	Reactive current closed-loop integral time in synchronous motor VF control	When the synchronous motor VF control mode is enabled, this parameter is used to set the integral coefficient of the reactive current closed-loop control. Setting range: 0–3000	30	0
P04.39	Reactive current closed-loop output limit in synchronous motor VF control	When the synchronous motor VF control mode is enabled, this parameter is used to set the output limit of the reactive current in the closed-loop control. A greater value indicates a higher reactive closed-loop compensation voltage and higher output power of the motor. In general, you do not need to modify this parameter. Setting range: 0–16000	8000	0
P04.40	Enable/disable IF mode for asynchronous motor 1	0: Disable 1: Enable	0	0
P04.41	Current setting in IF mode for asynchronous motor 1	When IF control is adopted for asynchronous motor 1, this parameter is used to set the output current. The value is a percentage in relative to the rated current of the motor. Setting range: 0.0–200.0%	120.0%	0
P04.42	Proportional coefficient in IF mode for asynchronous motor 1	When IF control is adopted for asynchronous motor 1, this parameter is used to set the proportional coefficient of the output current closed-loop control. Setting range: 0–5000	350	0
P04.43	Integral coefficient in IF mode for asynchronous motor 1	When IF control is adopted for asynchronous motor 1, this parameter is used to set the integral coefficient of the output current closed-loop control. Setting range: 0–5000	150	0

Function	Name	Detailed parameter description	Default	Modify
code		100 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	value	
		When IF control is adopted for asynchronous		
	Otti	motor 1, this parameter is used to set the		
	Starting	frequency threshold for switching off the output		
	frequency point	current closed-loop control. When the frequency is		
P04.44	for switching off	lower than the value of this parameter, the current	10.00Hz	0
	IF mode for	closed-loop control in the IF control mode is		
	asynchronous	enabled; and when the frequency is higher than		
	motor 1	that, the current closed-loop control in the IF		
		control mode is disabled.		
		Setting range: 0.00–P04.50		
	Enable/disable IF	2 7: 11		
P04.45	mode for	0: Disable	0	0
	asynchronous	1: Enable		
	motor 2)		
	Current setting in	When IF control is adopted for asynchronous		
D04.40	IF mode for	motor 2, this parameter is used to set the output	400.00/	
P04.46	asynchronous motor 2	current. The value is a percentage in relative to the	120.0%	0
		rated current of the motor.		
	5	Setting range: 0.0–200.0%		
	Proportional	When IF control is adopted for asynchronous		
504.47	coefficient in IF	motor 2, this parameter is used to set the	0.50	
P04.47	mode for	proportional coefficient of the output current	350	0
	asynchronous	closed-loop control.		
	motor 2	Setting range: 0–5000		
	Integral	When IF control is adopted for asynchronous		
504.40	coefficient in IF	motor 2, this parameter is used to set the integral	450	
P04.48	mode for	coefficient of the output current closed-loop	150	0
	asynchronous	control.		
	motor 2	Setting range: 0–5000		
		When IF control is adopted for asynchronous		
	0, ,;	motor 2, this parameter is used to set the		
	Starting	frequency threshold for switching off the output		
	frequency point	current closed-loop control. When the frequency is		
P04.49	for switching off	lower than the value of this parameter, the current	10.00Hz	0
	IF mode for	closed-loop control in the IF control mode is		
	asynchronous motor 2	enabled; and when the frequency is higher than		
	motor 2	that, the current closed-loop control in the IF		
		control mode is disabled.		
		Setting range: 0.00–P04.51		

Function code	Name	Detailed parameter description	Default value	Modify
P04.50	End frequency point for switching off IF mode for asynchronous motor 1	P04.44–P00.03	25.00Hz	0
P04.51	End frequency point for switching off IF mode for asynchronous motor 2	P04.49-P00.03	25.00Hz	0
P04.52	V/F energy- saving mode selection	0–2 0: Max. efficiency (default) 1: Optimal power factor 2: MTPA	0	0
P04.53	V/F energy- saving gain coefficient	0.0–400.0%	100.0%	0

P05 group—Input terminals

Function code	Name	Detailed parameter description	Default value	Modify
P05.00	HDI input type	0x00–0x11 Ones: HDIA input type 0: HDIA is high-speed pulse input 1: HDIA is digital input Tens: HDIB input type 0: HDIB is high-speed pulse input 1: HDIB is digital input	0	0
P05.01	Function of S1 terminal	0: No function 1: Forward running	1	0
P05.02	Function of S2 terminal	2: Reverse running 3: 3-wire control/Sin	4	0
P05.03	Function of S3 terminal	4: Forward jogging 5: Reverse jogging	7	0
P05.04	Function of S4 terminal	6: Coast to stop 7: Fault reset	0	0
P05.05	Function of HDIA	8: Running pause	0	0

Function code	Name	Detailed parameter description	Default value	Modify
	terminal	9: External fault input		
	terrina	10: Frequency increase (UP)		
		11: Frequency decrease (DOWN)		
		12: Clear frequency increase/decrease setting		
		13: Switchover between setting A and setting B		
		14: Switchover between combination setting and A		
		setting		
		15: Switchover between combination setting and		
		setting B		
		16: Multi-step speed terminal 1		
		17: Multi-step speed terminal 2		
		18: Multi-step speed terminal 3		
		19: Multi-step speed terminal 4		
		20: Multi-step speed pause		
		21: Acceleration/deceleration time selection 1		
	Function of HDIB	22: Acceleration/deceleration time selection 2		
		23: Simple PLC stop reset		
		24: Simple PLC pause		
		25: PID control pause		
D05.00		26: Wobbling frequency pause		
P05.06	terminal	27: Wobbling frequency reset	0	0
		28: Counter reset		
		29: Switching between speed control and torque		
		control		
		30: Acceleration/deceleration disabled		
		31: Counter trigger		
		32: Reserved		
		33: Clear frequency increase/decrease setting		
		temporarily		
		34: DC braking		
		35: Switch from motor 1 to motor 2		
		36: Command switches to keypad		
		37: Command switches to terminal		
		38: Command switches to communication		
		39: Pre-exciting command		
		40: Zero out power consumption quantity		
		41: Maintain power consumption quantity		
		42: Switching the upper torque limit setting mode		
		to keypad		

Function code	Name	Detailed parameter description	Default value	Modify
5545		43: Position reference point input (valid only for	74.40	
		S2, S3, and S4)		
		44: Spindle orientation disabled		
		45: Spindle zeroing/local position zeroing		
		46: Spindle zero-position setting 1		
		47: Spindle zero-position setting 2		
		48: Spindle indexing setting 1		
		49: Spindle indexing setting 2		
		50: Spindle indexing setting 3		
		51: Terminal for switching between position control		
		and speed control		
		52: Disable pulse input		
		53: Eliminate position deviation		
		54: Switch position proportional gain		
		55: Enable cyclic digital positioning		
		56: Emergency stop		
		57: Motor overtemperature fault input		
		58: Enable rigid tapping		
		59: Switch to V/F control		
		60: Switch to FVC control		
		61: PID polarity switchover		
		62: Reserved		
		63: Enable servo		
		64: FWD max. limit		
		65: REV max limit		
		66: Zero out encoder counting		
		67: Pulse increase		
		68: Enable pulse superimposition		
		69: Pulse decrease		
		70: Electronic gear selection		
		71: Switch to the master		
		72: Switch to the slave		
		73: Reset the roll diameter		
		74: Switch winding/unwinding		
		75: Pre-drive		
		76: Disable roll diameter calculation		
		77: Clear alarm display		
		78: Manual braking		
		79: Trigger forced feeding interrupt		

Function code	Name	Detailed parameter description	Default value	Modify
		80: Initial roll diameter 1		
		81: Initial roll diameter 2		
		82: Trigger fire mode control		
		83: Switch tension PID parameters		
		84–95: Reserved		
P05.07	Reserved			
		This function code is used to set the polarity of		
		input terminals.		
	Delegite of insert	When the bit is set to 0, the input terminal polarity		
P05.08	Polarity of input	is positive.	0x00	0
	terminal	When the bit is set to 1, the input terminal polarity		
		is negative.		
		0x00-0x3F		
		Set the sampling filtering time of the S1–S4, HDIA,		
		and HDIB terminals. In cases where interference is		
P05.09	Digital filter time	strong, increase the value of this parameter to	0.010s	0
		avoid malfunction.		
		0.000–1.000s		
	Virtual terminal setting	0x00–0x3F (0: disable, 1: enable)		
		BIT0: S1 virtual terminal		
		BIT1: S2 virtual terminal		
P05.10		BIT2: S3 virtual terminal	0x00	0
		BIT3: S4 virtual terminal		
		BIT4: HDIA virtual terminal		
		BIT5: HDIB virtual terminal		
		This function code is used to set the 2/3 Wire		
		control mode.		
		0: 2-Wire control 1; integrate enabling function with		
		direction. This mode is the most popular dual-line		
		mode. Direction of motor rotation is determined by		
	2/3 Wire control	the defined FWD/REV terminal command.		
P05.11	mode	FWD REV Running command	0	0
		K1 FWD OFF OFF Stop		
		REV ON OFF Forward		
		K2 running		
		OFF ON Reverse running		
		COM ON Hold		

Function code	Name	De	tailed para	meter de	scrip	tion	Default value	Modify
		1: 2-wire co	ntrol 2; sepa	arate ena	bling	function with		
		direction. In	this mode,	the define	ed FW	/D is		
		enabling ter	enabling terminal, and the direction is determined					
		by the state	y the state of REV.					
		FWI	n	FWD	REV	Running command		
		K1		OFF	OFF	Stop		
		K2 REV	′	ON	OFF	Forward running		
		CON	4	OFF	ON	Stop		
				ON	ON	Reverse running		
		2: 3-wire co	ntrol 1; This	mode de	fines	Sin as		
		enabling ter	minal, and t	the runnin	ıg cor	nmand is		
		generated b	y FWD, the	direction	is co	ntrolled by		
		REV. During	running, th	ne Sin terr	minal	should be		
		closed, and	terminal FV	VD gener	ates a	a rising edge		
		signal, then	the VFD sta	arts to rur	in th	e direction		
		set by the st	ate of termi	inal REV;	the V	FD should		
		be stopped	by disconne	ecting terr	ninal	S _{in} .		
		SB1	EWD					
		SB2	FWD					
		302	Sin					
			REV					
		K	REV					
			СОМ					
		The direction	n control du	ırina runn	_ ina is	shown		
		below.	ir control do	inig ranii	9 10	onown		
				Previou	us	Current		
		S _{in}	REV	runnin	g	running		
				direction	_	direction		
		ON	OFF→ON	Forward	F	Reverse		
				Reverse	F	orward		
		ON	ON→OFF	Reverse	F	orward		
				Forward	F	Reverse		

Function code	Name	Det	tailed para	meter descri	iption	Default value	Modify
		ON→OFF	ON OFF	Decelerate to	o stop		
		S _{in} : 3-wire co		WD: Forward	d runnina.		
		REV: Revers					
			-	mode define	es S _{in} as		
		enabling teri	minal. The r	unning comn	nand is		
		generated b	y FWD or R	REV, and they	control the		
		running dire	ction. Durin	g running, the	e terminal S _{in}		
		should be cl	osed, and t	erminal FWD	or REV		
		generates a	rising edge	signal to cor	ntrol the		
		running and	direction of	VFD; the VF	D should be		
		stopped by o	disconnectir	ng terminal S	in.		
		SB1	FWD				
		SB2					
		SB3	Sin				
			REV				
			сом				
		S _{in}	FWD	REV	Running direction		
				ON	Forward		
		ON	OFF→OI	OFF	Forward		
			ON	OFF	Reverse		
		ON	OFF	OFF→ON	Reverse		
		ON 055			Decelerate		
		ON→OFF			to stop		
		Sin: 3-wire o	control/Sin,	FWD: Forwa	rd running,		
		REV: Revers	se running				
		Note: For du	ual line runr	ning mode, w	hen FWD/REV		
		terminal is v	alid, if the V	/FD stops du	e to stop		
		_	•	er sources, it			
		_	•		pears even if		
				VD/REV are			
		make the VF	-D run agai	n, you need t	o trigger		

Function code	Name	Detailed parameter description	Default value	Modify
		FWD/REV again, such as PLC single-cycle stop,		
		fixed-length stop, and valid STOP/RST stop during		
		terminal control. (See P07.04.)		
P05.12	S1 terminal		0.000s	0
1 00.12	switch-on delay		0.0003	0
P05.13	S1 terminal		0.000s	0
1 00.10	switch-off delay		0.0003	0
P05.14	S2 terminal		0.000s	0
1 00.14	switch-on delay		0.0003	
P05.15	S2 terminal	These function codes define corresponding delay	0.000s	0
1 00.10	switch-off delay	of the programmable input terminals during level	0.0003	U
P05.16	S3 terminal	variation from switch-on to switch-off .	0.000s	0
1 00.10	switch-on delay	Si electrical level	0.0003	
P05 17	S3 terminal	Si valid invalid /// valid////////////////////////////////////	0.000s	0
	switch-off delay	Switch-on Switch-off	0.000	Ü
P05.18	S4 terminal	delay delay	0.000s	0
1 00.10	switch-on delay	Setting range: 0.000–50.000s	0.0000	Ŭ
P05.19	S4 terminal	Note: After a virtual terminal is enabled, the state	0.000s	0
	switch-off delay	of the terminal can be changed only in		Ŭ
P05.20	HDIA terminal	communication mode. The communication	0.000s	0
1 00.20	switch-on delay	address is 0x200A.	0.0000	Ŭ
P05.21	HDIA terminal		0.000s	0
1 00.21	switch-off delay		0.0000	Ŭ
P05.22	HDIB terminal		0.000s	0
1 00.22	switch-on delay		0.0003	
P05.23	HDIB terminal		0.000s	0
1 00.20	switch-off delay		0.0003	Ü
P05.24	Lower limit value	These function codes define the relation between	0.00V	0
1 00.21	of Al1	analog input voltage and corresponding set value	0.001	Ŭ
	Corresponding	of analog input. When the analog input voltage		
P05.25	setting of lower	exceeds the range of max./min. input, the max.	0.0%	0
	limit of Al1	input or min. input will be adopted during		
P05.26	Upper limit value	calculation.	10.00V	0
1 00.20	of AI1	When analog input is current input, 0–20mA	10.00 V	
	Corresponding	current corresponds to 0–10V voltage.		
P05.27	setting of upper	In different applications, 100% of analog setting	100.0%	0
	limit of Al1	corresponds to different nominal values.		
P05.28	Input filter time of	The figure below illustrates several settings.	0.030s	0

Function code	Name	Detailed parameter description	Default value	Modify
	Al1	Corresponding setting		
P05.29	Lower limit value of Al2	100%	-10.00V	0
P05.30	Corresponding setting of lower limit of Al2	-10V 0 AI 10V 20mA	-100.0%	0
P05.31	Intermediate value 1 of Al2	AI2 AI1	0.00V	0
P05.32	Corresponding setting of intermediate value 1 of Al2	Input filter time: Adjust the sensitivity of analog input, increase this value properly can enhance the	0.0%	0
P05.33	Intermediate value 2 of Al2	anti-interference capacity of analog variables; however, it will also degrade the sensitivity of	0.00V	0
P05.34	Corresponding setting of intermediate value 2 of Al2	analog input. Note: Al1 can support 0–10V/0–20mA input, when Al1 selects 0–20mA input; the corresponding voltage of 20mA is 10V; Al2 supports -10V–+10V	0.0%	0
P05.35	Upper limit value of Al2	input. Setting range of P05.24: 0.00V–P05.26 Setting range of P05.25: -300.0%–300.0%	10.00V	0
P05.36	Corresponding setting of upper limit of Al2	Setting range of P05.26: P05.24–10.00V Setting range of P05.27: -300.0%–300.0%	100.0%	0
P05.37	Input filter time of AI2	Setting range of P05.28: 0.000s–10.000s Setting range of P05.29: -10.00V–P05.31 Setting range of P05.30: -300.0%–300.0% Setting range of P05.31: P05.29–P05.33 Setting range of P05.32: -300.0%–300.0% Setting range of P05.33: P05.31–P05.35 Setting range of P05.34: -300.0%–300.0% Setting range of P05.35: P05.33–10.00V Setting range of P05.36: -300.0%–300.0% Setting range of P05.37: 0.000s–10.000s	0.030s	0
P05.38	HDIA high-speed pulse input function	Set input via frequency Reserved Input via encoder, used in combination with HDIB	0	0
P05.39	Lower limit frequency of	0.000 kHz – P05.41	0.000 kHz	0

Function code	Name	Detailed parameter description	Default value	Modify
	HDIA			
P05.40	Corresponding setting of lower limit frequency of HDIA	-300.0%–300.0%	0.0%	0
P05.41	Upper limit frequency of HDIA	P05.39–50.000kHz	50.000 kHz	0
P05.42	Corresponding setting of upper limit frequency of HDIA	-300.0%–300.0%	100.0%	0
P05.43	HDIA frequency input filter time	0.000s-10.000s	0.030s	0
P05.44	HDIB high-speed pulse input function selection	Set input via frequency Reserved Encoder input, it should be used in combination with HDIA	0	0
P05.45	Lower limit frequency of HDIB	0.000 kHz – P05.47	0.000 kHz	0
P05.46	Corresponding setting of lower limit frequency of HDIB	-300.0%–300.0%	0.0%	0
P05.47	Upper limit frequency of HDIB	P05.45–50.000kHz	50.000 kHz	0
P05.48	Corresponding setting of upper limit frequency of HDIB	-300.0%–300.0%	100.0%	0
P05.49	HDIB frequency input filter time	0.000s-10.000s	0.030s	0
P05.50	Al1 input signal type	Voltage type Current type Note: You can set the Al1 input signal type through the corresponding function code.	0	0

Function code	Name	Detailed parameter description	Default value	Modify
P05.51-	Reserved			
P05.52	Reserved			

P06 group—Output terminals

Function code	Name	Detailed parameter description	Default value	Modify
P06.00	HDO output type	0: Open collector high-speed pulse output: Max. frequency of the pulse is 50.00kHz. For details about the related functions, see P06.27–P06.31. 1: Open collector output: For details about the related functions, see P06.02.	0	0
P06.01	Y1 output selection	0: Invalid 1: In running	0	0
P06.02	HDO output selection	2: In forward running 3: In reverse running	0	0
P06.03	Relay RO1 output selection	4: In jogging 5: VFD fault	1	0
P06.04	Relay RO2 output selection	6: Frequency level detection FDT1 7: Frequency level detection FDT2 8: Frequency reached 9: Running in zero speed 10: Reach upper limit frequency 11: Reach lower limit frequency 12: Ready to run 13: In pre-exciting 14: Overload pre-alarm 15: Underload pre-alarm 16: Simple PLC stage completed 17: Simple PLC cycle completed 18: Reach set counting value 19: Reach designated counting value 20: External fault is valid 21: Reserved 22: Reach running time 23: Virtual terminal output of Modbus/Modbus TCP communication 24: Virtual terminal output of Ethernet	5	0

Function code	Name	Detailed parameter description	Default value	Modify
		communication		
		26: DC bus voltage established		
		27: Z pulse output		
		28: During pulse superposition		
		29: STO action		
		30: Positioning completed		
		31: Spindle zeroing completed		
		32: Spindle scale-division completed		
		33: Speed limit reached in torque control		
		34: Virtual terminal output of		
		EtherCAT/PROFINET/EtherNet IP communication		
		35: Reserved		
		36: Speed/position control switchover completed		
		37: Any frequency reached		
		38–40: Reserved		
		41: Y1 from the programmable card		
		42: Y2 from the programmable card		
		43: HDO from the programmable card		
		44: RO1 from the programmable card		
		45: RO2 from the programmable card		
		46: RO3 from the programmable card		
		47: RO4 from the programmable card		
		48: EC PT100 detected OH pre-alarm		
		49: EC PT1000 detected OH pre-alarm		
		50: AI/AO detected OH pre-alarm		
		51: Stopped or running at zero speed		
		52: Disconnection detected in tension control		
		53: Roll diameter setting reached		
		54: Max. roll diameter reached		
		55: Min. roll diameter reached		
		56: Fire control mode enabled		
		57: S1 terminal status		
		58: S2 terminal status		
		59: S3 terminal status		
		60: S4 terminal status		
		61: HDIA terminal status		
		62: HDIB terminal status		
		63: Brake release output		
		64: VFD fault (except STO and STL 1–3)		

Function code	Name	Detailed parameter description	Default value	Modify
P06.05	Output terminal polarity selection	Used to set the polarity of output terminals. When the bit is set to 0, output terminal polarity is positive; When the bit is set to 1, output terminal polarity is negative. BIT3 BIT2 BIT1 BIT0 RO2 RO1 HD0 Y1	0x00	0
		Setting range: 0x00–0x0F		
P06.06	Y switch-on delay		0.000s	0
P06.07	Y switch-off delay		0.000s	0
P06.08	HDO switch-on delay	Used to define the corresponding delay of the level variation from switch-on to switch-off.	0.000s	0
P06.09	HDO switch-off delay	Y electric level	0.000s	0
P06.10	Relay RO1 switch-on delay	Y valid Invalid // Valid // V	0.000s	0
P06.11	Relay RO1 switch-off delay	Setting range: 0.000–50.000s Note: P06.08 and P06.09 are valid only when	0.000s	0
P06.12	Relay RO2 switch-on delay	P06.00=1.	0.000s	0
P06.13	Relay RO2 switch-off delay		0.000s	0
P06.14	AO1 output selection	Running frequency (0–Max. output frequency) Set frequency (0–Max. output frequency)	0	0
P06.15	Reserved	2: Ramp reference frequency (0–Max. output		
P06.16	HDO high-speed pulse output	frequency) 3: Rotational speed (100% corresponds to the speed at max. output frequency.) 4: Output current (100% corresponds to twice the VFD rated current.) 5: Output current (100% corresponds to twice the motor rated current.) 6: Output voltage (100% corresponds to 1.5 times the VFD rated voltage.) 7: Output power (100% corresponds to twice the motor rated power.) 8: Set torque (100% corresponds to twice the motor rated current.)	0	0

Function code	Name	Detailed parameter description	Default value	Modify
		9: Output torque (Absolute value; 100%		
		corresponds to twice the motor rated torque.)		
		10: Al1 input (0-10V/0-20mA)		
		11: Al2 input (0–10V)		
		12: Al3 input (0-10V/0-20mA)		
		13: HDIA input (0.00–50.00kHz)		
		14: Value 1 set through Modbus communication (0–1000)		
		15: Value 2 set through Modbus communication		
		(0–1000)		
		16: Value 1 set through CANopen (0–1000)		
		17: Value 2 set through CANopen (0–1000)		
		18: Value 1 set through Ethernet 1 (0–1000)		
		19: Value 2 set through Ethernet 2 (0–1000)		
		20: HDIB input (0.00-50.00kHz)		
		21: Value 1 set through		
		EtherCAT/PROFINET/EtherNet IP (0–1000)		
		22: Torque current (bipolar; 100% corresponds to		
		triple the motor rated current.)		
		23: Exciting current (bipolar; 100% corresponds to		
		triple the motor rated current.)		
		24: Set frequency (bipolar; 0–Max. output		
		frequency)		
		25: Ramp reference frequency (bipolar; 0–Max.		
		output frequency)		
		26: Rotational speed (bipolar; 0-Speed		
		corresponding to max. output frequency)		
		27: Value 2 set through		
		EtherCAT/PROFINET/EtherNet IP communication		
		(0–1000)		
		28: AO1 from the programmable card (0–1000)		
		29: AO2 from the programmable card (0–1000)		
		30: Rotational speed (100% corresponds to twice		
		the motor rated synchronous speed)		
		31: Output torque (Actual value, 100%		
		corresponds to twice the motor rated torque)		
		32: Al/AO temperature detection output		
		33–63: Reserved		
		Note:		

Function code	Name	Detailed parameter description	Default value	Modify
		When AO1 is of the current output type, 100% corresponds to 20mA; when AO1 is of the voltage output type, 100% corresponds to 10V; 100% of HDO corresponds to the output of P06.30.		
P06.17	Lower limit of AO1 output	Above function codes define the relation between output value and analog output. When the output	0.0%	0
P06.18	Corresponding AO1 output of lower limit	value exceeds the set max./min. output range, the upper/low limit of output will be adopted during calculation.	0.00V	0
P06.19	Upper limit of AO1 output	When analog output is current output, 1mA corresponds to 0.5V voltage. In different	100.0%	0
P06.20	Corresponding AO1 output of upper limit	applications, 100% of output value corresponds to different analog outputs.	10.00V	0
P06.21	AO1 output filter time	Setting range of P06.17: -300.0%–P06.19 Setting range of P06.18: 0.00V–10.00V Setting range of P06.19: P06.17–300.0% Setting range of P06.20: 0.00V–10.00V Setting range of P06.21: 0.000s–10.000s	0.000s	0
P06.22	Reserved			
P06.23	PTC constant output current setting	0.000–20.000mA	4.000mA	0
P06.24	PTC resistance alarm threshold	0–60000Ω	750Ω	0
P06.25	PTC resistance alarm recovery threshold	0–60000Ω	150Ω	0
P06.26	Actual PTC resistance	0–60000Ω	Ω0	•
P06.27	Lower limit of HDO output	-300.0%–P06.29	0.00%	0
P06.28	Corresponding HDO output of	0.00–50.00kHz	0.00kHz	0

Function code	Name	Detailed parameter description	Default value	Modify
	lower limit			
P06.29	Upper limit of HDO output	P06.27–300.0%	100.0%	0
P06.30	Corresponding HDO output of upper limit	0.00–50.00kHz	50.00 kHz	0
P06.31	HDO output filter time	0.000s-10.000s	0.000s	0
P06.32	Reserved			
P06.33	Frequency reach detection value	0.00Hz-P00.03	1.00Hz	0
P06.34	Frequency reach detection time	0.0–3600.0s	0.5s	0

P07 group—HMI

Function code	Name	Detailed parameter description	Default value	Modify
P07.00	User password	0–65535 Set it to any non-zero value to enable password protection. 00000: Clear previous user password and disable password protection. After user password becomes valid, if wrong password is inputted, you will be denied entry. It is necessary to keep the user password in mind. Password protection will be effective one minute after exiting function code edit state, and it will display "0.0.0.0.0" if you press PRG/ESC key to enter function code edit state again, you need to input the correct password. Note: Restoring to default values will clear user password. Exercise caution when using this function.	0	0
P07.01	Reserved			
P07.02	Function of keys	Range: 0x00–0x27 Ones: Function selection of QUICK/JOG key 0: No function 1: Jogging 2: Reserved	0x01	0

Function code	Name	Detailed parameter description	Default value	Modify
		3: Forward/reverse rotation switchover		
		4: Clear UP/DOWN setting		
		5: Coast to stop		
		6: Switch over the running command reference		
		mode in sequence		
		7: Reserved		
		Tens: Reserved		
		When P07.02=6, set the switchover sequence of		
	Running	running command channel.		
	command	0: keypad control → terminal control →		
P07.03	channel	communication control	0	0
	switchover	1: keypad control←→terminal control		
	sequence of	2: keypad control←→communication control		
	QUICK key	3: terminal control←→communication control		
		Validness selection of stop function of STOP/RST.		
		For fault reset, STOP/RST is valid under any		
	Stop function selection of STOP/RST key	situation.		
P07.04		0: valid only for panel control only	0	0
		1: valid for both panel and terminal control		
		2: valid for both panel and communication control		
		3: valid for all control modes		
		0x0000-0xFFFF		
		BIT0: Running frequency (Hz on)		
		BIT1: Set frequency (Hz blinking)		
		BIT2: Bus voltage (V on)		
		BIT3: Output voltage (V on)		
		BIT4: Output current (A on)		
		BIT5: Rotational speed (rpm on)		
	Selection 1 of	BIT6: Output power (% on)		
P07.05	parameters	BIT7: Output torque (% on)	00055	
P07.05	displayed in	BIT8: PID reference value (% blinking)	0x03FF	0
	running state	BIT9: PID feedback value (% on)		
		BIT10: Input terminal status		
		BIT11: Output terminal status		
		BIT12: Torque setting (% on)		
		BIT13: Pulse counting		
		BIT14: Motor overload percentage (% on)		
		BIT15: PLC and multi-step speed actual step		
		number		

Function	Name	Detailed parameter description	Default	Modify
code			value	
		0x0000-0xFFFF		
		BIT0: Al1 value (V on)		
		BIT1: Al2 value (V on)		
		BIT2: Al3 value (V on)		
	Selection 2 of	BIT3: HDIA frequency		
P07.06	parameters	BIT4: HDIB frequency	0x0000	0
	displayed in	BIT5: VFD overload percentage (% on)		
	running state	BIT6: Ramp frequency reference value (Hz on)		
		BIT7: Linear speed		0
		BIT8: AC incoming current		
		BIT9: Frequency upper limit		
		BIT10-BIT15: Reserved		
		0x0000-0xFFFF		
		BIT0: Set frequency (Hz on, frequency blinking		
		slowly)		
		BIT1: Bus voltage (V on)		
	Selection of	BIT2: Input terminal status		
		BIT3: Output terminal status		
		BIT4: PID reference value (% blinking)		
		BIT5: PID feedback value (% on)		
		BIT6: Torque setting (% on)		
P07.07	parameters	BIT7: Al1 value (V on)	0x00FF	0
	displayed in	BIT8: Al2 value (V on)		
	stopped state	BIT9: Al3 value (V on)		
		BIT10: HDIA frequency		
		BIT11: HDIB frequency		
		BIT12: Counting		
		BIT13: PLC and multi-step speed actual step		
		number		
		BIT14: Frequency upper limit		
		BIT15: Reserved		
	Frequency	0.01–10.00		
P07.08	display coefficient	Display frequency=running frequency× P07.08	1.00	0
	0 1 11 1	0.1–999.9%		
P07.09	Speed display	Mechanical speed=120×display running	100.0%	0
	coefficient	frequency×P07.09/number of motor pole pairs	1	
D07.40	Linear speed	0.1–999.9%	4.00/	
P07.10	display coefficient	Linear speed=mechanical speed×P07.10	1.0%	0
P07.11	Temperature of	-20.0–120.0°C	0.0°C	•
	•	-188-	ı	

Function code	Name	Detailed parameter description	Default value	Modify
	rectifier bridge module			
P07.12	Temperature of inverter module	-20.0–120.0°C	0.0°C	•
P07.13	Software version of control board	1.00–655.35	Depends on version	•
P07.14	Accumulated running time	0–65535h	0h	•
P07.15	High bit of VFD power consumption	Display the power consumption of the VFD. VFD power consumption=P07.15×1000+P07.16	0kWh	•
P07.16	Low bit of VFD power consumption	Setting range of P07.15: 0–65535 kWh (×1000) Setting range of P07.16: 0.0–999.9 kWh	0.0kWh	•
P07.18	Rated power of VFD	0.4–3000.0kW	Depends on model	•
P07.19	Rated voltage of VFD	50–1200V	Depends on model	•
P07.20	Rated current of VFD	0.1–6000.0A	Depends on model	•
P07.21	Factory barcode 1	0x0000-0xFFFF	Depends on model	•
P07.22	Factory barcode 2	0x0000-0xFFFF	Depends on model	•
P07.23	Factory barcode 3	0x0000-0xFFFF	Depends on model	•
P07.24	Factory barcode 4	0x0000-0xFFFF	Depends on model	•
P07.25	Factory barcode 5	0x0000-0xFFFF	Depends on model	•
P07.26	Factory barcode 6	0x0000-0xFFFF	Depends on model	•
P07.27	Type at present fault	No fault Inverter unit U phase protection (OUt1)	0	•
P07.28	Type of the last fault	2: Inverter unit V phase protection (OUt2) 3: Inverter unit W phase protection (OUt3)	0	•
P07.29	Type of the 2nd-	4: Overcurrent during acceleration (OC1)	0	•

Function code	Name	Detailed parameter description	Default value	Modify
	last fault	5: Overcurrent during deceleration (OC2)		
D07.00	Type of the 3rd-	6: Overcurrent during constant speed (OC3)	_	
P07.30	last fault	7: Overvoltage during acceleration (OV1)	U	
P07.31	Type of the 4th-	8: Overvoltage during deceleration (OV2)	0	
P07.31	last fault	9: Overvoltage during constant speed (OV3)	U	
		10: Bus undervoltage fault (UV)		
		11: Motor overload (OL1)		
		12: VFD overload (OL2)		
		13: Phase loss on input side (SPI)		
		14: Phase loss on output side (SPO)		
		15: Rectifier module overheat (OH1)		
		16: Inverter module overheat (OH2)		
		17: External fault (EF)		
		18: Modbus/Modbus TCP communication fault		
		(CE)		
		19: Current detection fault (ItE)		
		20: Motor autotuning fault (tE)		
		21: EEPROM operation fault (EEP)		
		22: PID feedback offline fault (PIDE)		
		23: Brake unit fault (bCE)	l Mo	
		24: Running time reached (END)		
P07.32	Type of the 5th-	25: Electronic overload (OL3)		
1 07.02	last fault	26: Keypad communication error (PCE)		•
		27: Parameter upload error (UPE)		
		28: Parameter download error (DNE)		
		30: Ethernet communication fault (E-NET)		
		31: CANopen communication fault (E-CAN)		
		32: To-ground short-circuit fault 1 (ETH1)		
		33: To-ground short-circuit fault 2 (ETH2)	0 0 0	
		34: Speed deviation fault (dEu)		
		35: Mal-adjustment fault (STo)		
		36: Underload fault (LL)		
		37: Encoder offline fault (ENC1o)		
		38: Encoder reversal fault (ENC1d)	1	
		39: Encoder Z pulse offline fault (ENC1Z)	1	
		40: Safe torque off (STO)	1	
		41: Channel H1 safety circuit exception (STL1)	1	
		42: Channel H2 safety circuit exception (STL2)		
		43: Channel H1 and H2 exception (STL3)	<u> </u>	

Function	Name	Detailed parameter description	Default value	Modify
code		44: Safety code FLASH CRC fault (CrCE)	value	
		45: Programmable card customized fault 1 (P-E1)		
		46: Programmable card customized fault 2 (P-E2)		
		47: Programmable card customized fault 3 (P-E3)		
		48: Programmable card customized fault 4 (P-E4)		
		49: Programmable card customized fault 5 (P-E5)		
		50: Programmable card customized fault 6 (P-E6)		
		51: Programmable card customized fault 7 (P-E7)		
		52: Programmable card customized fault 8 (P-E8)		
		53: Programmable card customized fault 9 (P-E9)		
		54: Programmable card customized fault 10 (P-		
		E10)		
		55: Duplicate card type(E-Err)		
		56: Encoder UVW loss fault (ENCUV)		
		58: CANopen communication fault (SECAN)		
		59: Motor over-temperature fault (OT)		
		60: Failure to identify the card at slot 1 (F1-Er)		
		61: Failure to identify the card at slot 2 (F2-Er)		
		62: Failure to identify the card at slot 3 (F3-Er)		
		63: Communication timeout of the card at slot 1		
		(C1-Er)		
		64: Communication timeout of the card at slot 2		
		(C2-Er)		
		65: Communication timeout of the card at slot 3		
		(C3-Er)		
		66: EtherCAT communication fault (E-CAT)		
		69: CAN slave fault in master/slave		
		synchronization (S-Err)		
		70: EC PT100 detected overheating (OtE1)		
		71: EC PT1000 detected overheating (OtE2)		
		72: EtherNet/IP communication timeout (E-EIP)		
		73: No upgrade bootload (E-PAO)		
		74: Al1 disconnected (E-Al1)		
		75: Al2 disconnected (E-Al2)		
		76: Al3 disconnected (E-Al3)		
		77: AI/AO detected overheating (OH3)		
		78: Brake feedback fault (E-brF)		
		79: Stalling in V/F control (E-StK)		
		80: Out-of-step in V/F control (E-LSt)		

Function code	Name	Detailed parameter description	Default value	Modify
P07.33	Running frequency at present fault	0.00Hz-P00.03	0.00Hz	•
P07.34	Ramp reference frequency at present fault	0.00Hz-P00.03	0.00Hz	•
P07.35	Output voltage at present fault	0–1200V	0V	•
P07.36	Output current at present fault	0.0–6300.0A	0.0A	•
P07.37	Bus voltage at present fault	0.0–2000.0V	0.0V	•
P07.38	Max. temperature at present fault	-20.0–120.0°C	0.0°C	•
P07.39	Input terminal state at present fault	0x0000-0xFFFF	0x0000	•
P07.40	Output terminal state at present fault	0x0000-0xFFFF	0x0000	•
P07.41	Running frequency at last fault	0.00Hz-P00.03	0.00Hz	•
P07.42	Ramp reference frequency at last fault	0.00Hz-P00.03	0.00Hz	•
P07.43	Output voltage at last fault	0–1200V	0V	•
P07.44	Output current at last fault	0.0–6300.0A	0.0A	•
P07.45	Bus voltage at last fault	0.0–2000.0V	0.0V	•
P07.46	Max. temperature at last fault	-20.0–120.0°C	0.0°C	•
P07.47	Input terminal state at last fault	0x0000-0xFFFF	0x0000	•
P07.48	Output terminal state at last fault	0x0000-0xFFFF	0x0000	•

Function code	Name	Detailed parameter description	Default value	Modify
	Running			
P07.49	frequency at 2nd-	0.00Hz-P00.03	0.00Hz	•
	last fault			
	Ramp reference			
P07.50	frequency at 2nd-	0.00Hz-P00.03	0.00Hz	•
	last fault			
P07.51	Output voltage at	0–1200V	0V	•
1 07.01	2nd-last fault	0 12001		
P07.52	Output current at	0.0–6300.0A	0.0A	•
1 07.02	2nd-last fault	0.0 0000.071	0.071	
P07.53	Bus voltage at	0.0–2000.0V	0.0V	•
1 07.00	2nd-last fault	0.0 2000.0 0	0.0 V	
P07.54	Max. temperature	-20.0–120.0°C	0.0°C	
1 07.04	at 2nd-last fault	20.0 120.0 0	0.0 0	
	Input terminal			
P07.55	state at 2nd-last	0x0000-0xFFFF	0x0000	•
	fault			
	Output terminal			
P07.56	state at 2nd-last	0x0000-0xFFFF	0x0000	•
	fault			

P08 group—Enhanced functions

Function code	Name	Detailed parameter description	Default value	Modify
P08.00	Acceleration		Depends	0
1 00.00	time 2		on model	0
P08.01	Deceleration	See P00.11 and P00.12 for detailed definitions.	Depends	0
1 00.01	time 2		on model	0
P08.02	Acceleration	acceleration/deceleration time, which can be	Depends	0
F00.02	time 3		on model	O
P08.03	Deceleration	selected by multifunction digital input terminal (P05 group). The acceleration/deceleration time of the	Depends	0
F00.03	time 3	VFD is the first group by default.	on model	
P08.04	Acceleration	Setting range: 0.0–3600.0s	Depends	0
1 00.04	time 4	County runge. 0.0 0000.00	on model	0
P08.05	Deceleration		Depends	0
F00.05	time 4		on model	O
	Running	Used to define the reference frequency of the VFD		
P08.06	frequency of	during jogging.	5.00Hz	0
	jogging	Setting range: 0.00Hz–P00.03 (Max. output		

Function code	Name	Detailed parameter description	Default value	Modify
		frequency)		
P08.07	Acceleration time of jogging	Jogging acceleration time is the time needed for the VFD to accelerate from 0Hz to Max. output frequency (P00.03).	Depends	0
P08.08	Deceleration time of jogging	Jogging deceleration time is the time needed from decelerating from Max. output frequency (P00.03) to 0Hz. Setting range: 0.0–3600.0s	on model	0
P08.09	Jump frequency 1	When the set frequency is within the range of jump	0.00Hz	0
P08.10	Jump frequency amplitude 1	frequency, the VFD will run at the boundary of jump frequency.	0.00Hz	0
P08.11	Jump frequency 2	The VFD can avoid mechanical resonance point	0.00Hz	0
P08.12	Jump frequency amplitude 2	by setting the jump frequency, and three jump frequency points can be set. If the jump frequency	0.00Hz	0
P08.13	Jump frequency 3	points are set to 0, this function will be invalid.	0.00Hz	0
P08.14	Jump frequency amplitude 3	Setting range: 0.00Hz–P00.03 (Max. output frequency)	0.00Hz	0
P08.15	Amplitude of wobbling frequency	0.0–100.0% (relative to set frequency)	0.0%	0
P08.16	Amplitude of jump frequency	0.0–50.0% (relative to amplitude of wobbling frequency)	0.0%	0
P08.17	Rise time of wobbling frequency	0.1–3600.0s	5.0s	0
P08.18	Descend time of wobbling frequency	0.1–3600.0s	5.0s	0
P08.19	Switching frequency of acceleration/dece leration time	0.00–P00.03 (Max. output frequency) 0.00Hz: no switchover Switch to acceleration/deceleration time 2 if the running frequency is larger than P08.19	0.00Hz	0

Function code	Name	Detailed parameter description	Default value	Modify
P08.20	Frequency threshold of the start of droop control	0.00–50.00Hz	2.00Hz	0
P08.21	Reference frequency of acceleration/dece leration time	Max. output frequency Set frequency 1: 100Hz Note: Valid for straight acceleration/deceleration only	0	©
P08.22	Output torque display selection	Based on torque current Based on output power	0	0
P08.23	Number of decimal points of frequency	0: Two decimal points 1: One decimal point	0	0
P08.24	Number of decimal points of linear speed	0: No decimal point 1: One 2: Two 3: Three	0	0
P08.25	Set count value	P08.26–65535	0	0
P08.26	Designated count value	0–P08.25	0	0
P08.27	Set running time	0–65535min	0min	0
P08.28	Automatic fault reset times	Automatic fault reset times: When the VFD selects automatic fault reset, it is used to set the times of	0	0
P08.29	Automatic fault reset time interval	automatic reset, if the continuous reset times exceeds the value set by P08.29, the VFD will report fault and stop to wait for repair. Interval of automatic fault reset: select the interval time from when fault occurred to automatic fault reset actions. After VFD starts, if no fault occurred during 60s, the fault reset times will be zeroed out. Setting range of P08.28: 0–10 Setting range of P08.29: 0.1–3600.0s	1.0s	0
P08.30	Reduction ratio of droop control	This function code sets the variation rate of the VFD output frequency based on the load; it is mainly used in balancing the power when multiple motors drive the same load.	0.00Hz	0

Function code	Name	Detailed parameter description	Default value	Modify
		Setting range: 0.00–50.00Hz		
P08.31	Switchover between motor 1 and motor 2	0x00–0x14 Ones: Switchover channel 0: Terminal 1: Modbus/Modbus TCP communication 2: CANopen communication 3: Ethernet communication 4: EtherCAT/PROFINET/EtherNet IP communication Tens: indicates whether to enable switchover during running 0: Disable 1: Enable	0x00	0
P08.32	FDT1 level detection value	When the output frequency exceeds the corresponding frequency of FDT level,	60.00Hz	0
P08.33	FDT1 lag detection value	multifunction digital output terminal outputs "frequency level detection FDT" signal, this signal	5.0%	0
P08.34	FDT2 level detection value	will be valid until the output frequency lowers to below the corresponding frequency (FDT level-	60.00Hz	0
P08.35	FDT2 lag detection value	FDT lag detection value), the waveform is shown in the figure below. **PDT level FDT lag Time t Time t FDT lag Time t	5.0%	0
P08.36	Detection value for frequency arrival	When the output frequency is within the positive /negative detection range of the set frequency, the multifunction digital output terminal outputs "frequency arrival" signal as shown below.	0.00Hz	0

Function code	Name	Det	ailed param	eter descrip	tion	Default value	Modify
		Setting range frequency)	e: 0.00Hz-P0	Time t			
P08.37	Enable/disable energy- consumption braking	0: Disable er	nergy-consun	•		1	0
P08.38	Energy- consumption braking threshold voltage	ľ	oltage class. e: 200.0–200 ustomers froi	oroperly to br ill change wit 0.0V m setting a to	ake the h the o large	220V voltage: 380.0V; 460V voltage: 740.0V; 575V voltage: 1000.0V	0
P08.39	Running mode of cooling fan	0: Common	running mode eeps running node 2		ıp	0	0
P08.40	PWM selection	0x0000-0x1 Ones place: 0: PWM mod modulation 1: PWM mod Tens place: I 0: Low-spee	121 PWM mode	edulation and odulation eed carrier lin		0x1101	0

Function code	Name	Detailed parameter description	Default value	Modify
code		2: No limit Hundreds place: Deadzone compensation method 0: Compensation method 1 1: Compensation method 2 Thousands place: PWM loading mode selection 0: Interruptive loading 1: Normal loading 0x00–0x1111 Ones place: Whether to enable overmodulation 0: Disable overmodulation 1: Enable overmodulation	value	
P08.41	Overmodulation selection	Tens place: Overmodulation mode 0: Mild overmodulation 1: Deepened overmodulation Hundreds: Carrier frequency limit 0: Yes 1: No Thousands: Output voltage compensation 0: No 1: Yes	0x1001	0
P08.42	LED keypad control setting	0x0000–0x1223 Ones place: Frequency control enabling selection 0: Controls through both the Up/Down key and digital potentiometer are valid. 1: Only control through the Up/Down key is valid. 2: Only control through the digital potentiometer is valid. 3: Controls through the Up/Down key and digital potentiometer are invalid. Tens place: Frequency control selection 0: Valid only when P00.06=0 or P00.07=0 1: Valid for all frequency setting methods 2: Invalid for multi-step speed running when multi- step speed running has the priority Hundreds place: Action selection for stop 0: Setting is valid. 1: Valid during running, cleared after a stop command is received	0x0000	0

Function code	Name	Detailed parameter description	Default value	Modify
		Thousands place: Indicates whether to enable the		
		integral function through the Up/Down key and		
		digital potentiometer		
		0: Enable the integral function		
		1: Disable the integral function		
	LED keypad			
P08.43	potentiometer	0.01–10.00s	0.10	0
	integral rate			
	_	0x000-0x221		
		Ones: Frequency control selection		
		0: UP/DOWN terminal setting is valid		
		1: UP/DOWN terminal setting is invalid		
		Tens: Frequency control selection		
	UP/DOWN	0: Valid only when P00.06=0 or P00.07=0		
P08.44	terminal control	1: All frequency modes are valid	0x000	0
	setting	2: Invalid for multi-step speed when multi-step		
		speed takes priority		
		Hundreds: Action selection during stop		
		0: Valid		
		1: Valid at running, cleared after stop		
		2: Valid at running, cleared upon a stop command		
	UP terminal	0.01–50.00Hz/s		
P08.45	frequency	Note: The value is also used as the frequency	0.50Hz/s	0
P00.43	incremental	increment or decrement that is made by pressing	U.5UHZ/S	
	integral rate	the UP/DOWN key on the LCD pad.		
	DOWN terminal			
P08.46	frequency	0.01–50.00Hz/s	0.50Hz/s	0
1 00.40	decrement	0.01-30.00112/3	0.50112/5	
	change rate			
		0x000–0x111		
		Ones place: Action selection at power-off during		
		frequency adjusting through digitals.		
	Action selection	0: Save the setting at power-off.		
P08.47	for frequency	1: Clear the setting at power-off.	0x000	0
1 00.47	setting during	Action selection at power-off during frequency	0,000	
	power down	adjusting through Modbus/Modbus TCP		
		communication		
		0: Save the setting at power-off.		
		1: Clear the setting at power-off.		

Function code	Name	Detailed parameter description	Default value	Modify
		Hundreds place: Action selection at power-off during frequency adjusting through DP communication 0: Save the setting at power-off. 1: Clear the setting at power-off.		
P08.48	High bit of initial value of power consumption	Set the initial value of power consumption. Initial value of power consumption=P08.48×1000 + P08.49	0kWh	0
P08.49	Low bit of initial value of power consumption	Setting range of P08.48: 0–59999 kWh (k) Setting range of P08.49: 0.0–999.9 kWh	0.0kWh	0
P08.50	Flux braking	This function code is used to enable flux braking function. 0: Invalid 100–150: The larger the coefficient, the stronger the braking intensity The VFD enables motor to decelerate quickly by increasing the motor flux which converts energy generated during braking into thermal energy. The VFD monitors motor state continuously even during flux braking, thus flux braking can be applied in motor stop or used to change motor speed. The flux braking also carries the following advantages. 1) Brake immediately after sending stop command, removing the need to wait for flux to attenuate. 2) Better cooling effect. During flux braking, the stator current of the motor increases, while the rotor current does not change, while the cooling effect of stator is much more effective than that of the rotor.	0	0
P08.51	VFD input power factor	This function code is used to adjust the current display value on the AC input side. 0.00–1.00	0.56	0
P08.52	STO lock	O: STO alarm lock Alarm-lock means STO alarm must be reset after state restoration when STO occurs. I: STO alarm unlock Alarm-unlock means when STO occurs, after state	0	0

Function code	Name	Detailed parameter description	Default value	Modify
		restoration, STO alarm will disappear automatically.		
P08.53	Bias value of upper limit frequency of torque control	0.00 Hz–P00.03 (Max. output frequency) Note: This parameter is valid only for the torque control mode.	0.00Hz	0
P08.54		0: No limit on acceleration or deceleration 1: Acceleration/deceleration time 1 2: Acceleration/deceleration time 2 3: Acceleration/deceleration time 3 4: Acceleration/deceleration time 4	0	0
P08.55	Enabling auto carrier frequency reduction	O: Disable 1: Enable Note: Automatic carrier frequency reduction indicates that the VFD automatically reduces the carrier frequency when detecting the heat sink temperature exceeds the rated temperature. When the temperature decreases to a certain degree, the carrier frequency recovers. This function reduces the chance of VFD overheat alarm.	0	0
P08.56	Actual carrier frequency	0.0–15.0kHz	Depends on model	•
P08.57	Temperature point of auto carrier frequency reduction	40.0–85.0°C	70.0°C	0
P08.58	Interval of carrier frequency reduction	0–30min The value 0 indicates carrier frequency reduction is invalid.	10min	0
P08.59	Al1 disconnection detection threshold	0–100%	0	0
P08.60	Al2 disconnection detection threshold	0–100%	0	0
P08.61	Al3 disconnection detection threshold	0–100%	0	0

Function code	Name	Detailed parameter description	Default value	Modify
P08.62	Output current filter time	0.000–10.000s	0.000	0
P08.63	Output torque filter times	0–8	8	0
P08.64	ItE detection delay	0.000–60.000s	2.000s	0
P08.65	Enabling brake	0-1 0: Disable 1: Enable	0	0
P08.66	Brake feedback mode	0–1 0: Without feedback signal 1: With feedback signal	1	0
P08.67	Brake release frequency	0.20–20.00Hz	1.00Hz	0
P08.68	Brake release current	0.0%–P08.75 It is relative to the motor rated current.	0.0%	0
P08.69	Delay before brake release	0.000–5.000s	0.300s	0
P08.70	Delay after brake release	0.000–5.000s	0.300s	0
P08.71	Frequency of brake closing	0.20–20.00Hz	1.00Hz	0
P08.72	Delay before brake closing	0.000–5.000s	0.300s	0
P08.73	Delay after brake closing	0.000–5.000s	0.300s	0
P08.74	Brake feedback exception detection time	0.000–20.000s	3.000s	0
P08.75	Electromotive torque upper limit of brake closing	0.0–200.0% It is relative to the motor rated current.	180.0%	0
P08.76	Braking torque upper limit of brake closing	0.0–200.0% It is relative to the motor rated current.	180.0	0
P08.77	PWM mode selection	0–1 0: SVPWM 1: DPWM	0	0

Function code	Name	Detailed parameter description	Default value	Modify
P08.78	Default voltage	0–3	0	/©
	and frequency	0: Default voltage is 230V, and default frequency is		
	selection	50Hz		
		1: Default voltage is 220 V, and default frequency		
		is 60Hz		
		2: Default voltage is 400 V, and default frequency		
		is 50Hz		
		3: Default voltage is 460 V, and default frequency		
		is 60Hz		
P08.79-	Reserved			
P08.83				
P08.84	Debug function	0x0000-0xFFFF	0xFFFF	0

P09 group—PID control

Function code	Name	Detailed parameter description	Default value	Modify
P09.00	PID reference source	When frequency command (P00.06, P00. 07) is set to 7, or channel of voltage setting (P04.27) is set to 6, the VFD running mode is process PID control. This parameter determines the target reference channel of process PID. 0: Set by P09.01 1: Al1 2: Al2 3: Al3 4: High-speed pulse HDIA 5: Multi-step 6: Modbus/Modbus TCP communication 7: CANopen communication 8: Ethernet communication 9: High-speed pulse HDIB 10: PROFINET/EtherNet IP communication 11: Programmable card 12: Reserved The set target value of process PID is relative value, the set 100% corresponds to 100% of the feedback signal of controlled system. The system operates based on the relative value	0	0

Function code	Name	Detailed parameter description	Default value	Modify
		(0–100.0%)		
P09.01	PID digital setting	You need to set this parameter when P09.00 is set to 0, the reference value of this parameter is the feedback variable of the system. Setting range: -100.0%—100.0%	0.0%	0
P09.02	PID feedback source	This parameter is used to select PID feedback channel. 0: Al1 1: Al2 2: Al3 3: High-speed pulse HDIA 4: Modbus/Modbus TCP communication 5: CANopen communication 6: Ethernet communication 7: High-speed pulse HDIB 8: PROFINET/EtherNet IP communication 9: Programmable expansion card 10: Reserved Note: The reference channel and feedback channel cannot overlap; otherwise, PID cannot be controlled effectively.	0	0
P09.03	PID output characteristics	0: PID output is positive characteristic: namely, the feedback signal is larger than the PID reference, which requires the VFD output frequency to decrease for PID to reach balance, for example, tension PID control of winding 1: PID output is negative characteristics: namely the feedback signal is larger than PID reference, which requires VFD output frequency to increase for PID to reach balance, for example, tension PID control of unwinding.	0	0
P09.04	Proportional gain (Kp)	This function code is suitable for proportional gain P of PID input. It determines the regulation intensity of the whole PID regulator, the larger the value of P, the stronger the regulation intensity. If this parameter is 100, it means when the deviation between PID feedback and reference is 100%, the regulation amplitude of PID regulator (ignoring integral and	1.80	0

Function code	Name	Detailed parameter description	Default value	Modify
		differential effect) on output frequency command is		
		the max. frequency (ignoring integral and		
		differential actions).		
		Setting range: 0.00–100.00		
		It determines the speed of integral regulation made on the deviation between PID feedback and		
		reference by PID regulator. When the deviation		0
		between PID feedback and reference is 100%, the		
		regulation of integral regulator (ignoring integral		
P09.05	Integral time (Ti)	and differential actions), after undergoing	0.90s	
		continuous regulation during this time period, can		
		reach Max. output frequency (P00.03)		
		The shorter the integral time, the stronger the		
		regulation intensity.		
		Setting range: 0.00–10.00s		
		It determines the intensity of the regulation made	ļ	
		on the change rate of deviation between PID		
		feedback and reference by PID regulator. If		
		feedback changes by 100% during this period, the		
P09.06	Derivative time	regulation of differential regulator (ignoring integral	0.00s	0
F09.00	(Td)	and differential actions) is Max. output frequency (P00.03)	0.005	
		The longer the derivative time, the stronger the		
		regulation intensity.		
		Setting range: 0.00–10.00s		
	Sampling cycle (T)	It means the sampling cycle of feedback. The		0
		regulator operates once during each sampling		
P09.07		cycle. The larger the sampling cycle, the slower	0.001s	
		the response.		
		Setting range: 0.001–1.000s		
	Limit of PID control deviation	It is the max. allowable deviation of PID system		
		output value relative to closed-loop reference		
P09.08		value. Within this limit, PID regulator stops	0.0%	0
		regulation. Set this function code properly to		
		regulate the precision and stability of PID system.		
		Setting range: 0.0–100.0%		

Function code	Name	Detailed parameter description	Default value	Modify
		Reference Positive deviation limit (P09.08) Reference Negative deviation limit (-P09.08) Time Time		
P09.09	Upper limit value of PID output	These two function codes are used to set the upper/lower limit value of PID regulator.	100.0%	0
P09.10	Lower limit value of PID output	100.0% corresponds to Max. output frequency (P00.03) or max. voltage (P04.31) Setting range of P09.09: P09.10–100.0% Setting range of P09.10: -100.0%–P09.09	0.0%	0
P09.11	Feedback offline detection value	Set PID feedback offline detection value, when the detection value is no more than the feedback	0.0%	0
P09.12	Feedback offline detection time	offline detection value, and the duration exceeds the value set in P09.12, the VFD will report "PID feedback offline fault", and keypad displays PIDE. Output frequency 11 < T2, so the VFD continues running 12=P09.12 P09.11 PIDE Running Fault output PIDE Setting range of P09.11: 0.0–100.0% Setting range of P09.12: 0.0–3600.0s	1.0s	0
P09.13	PID control selection	0x0000–0x1111 Ones: 0: Continue integral control after the frequency reaches upper/lower limit 1: Stop integral control after the frequency reaches upper/lower limit Tens: 0: The same with the main reference direction	0x0001	0

Function code	Name	Detailed parameter description	Default value	Modify
		1: Contrary to the main reference direction		
		Hundreds:		
		0: Limit based on the max. frequency		
		1: Limit based on A frequency		
		Thousands:		
		0: A+B frequency, acceleration /deceleration of		
		main reference A frequency source buffering is invalid		
		1: A+B frequency, acceleration/ deceleration of		
		main reference A frequency source buffering is		
		valid, acceleration and deceleration are		
		determined by P08.04 (acceleration time 4).		
		0.00–100.00		
		Low-frequency switching point: 5.00Hz high-		
D00 44	Low-frequency	frequency switching point: 10.00Hz (P09.04	4.00	
P09.14	proportional gain	corresponds to high-frequency parameter), and the	1.00	0
	(Kp)	middle is the linear interpolation between these		
		two points		
	Acceleration/			
P09.15	deceleration time	0.0–1000.0s	0.0s	0
	of PID command			
P09.16	Filter time of PID output	0.000–10.000s	0.000s	0
F09.10		0.000-10.0005	0.000s	U
P09.17	Reserved			
P09.18	Low-frequency integral time	Refer to P09.05.	0.000	0
F09.10		Setting range: 0.00–10.00s	0.90s	
D00 10	Low-frequency differential time	Refer to P09.06.	0.00s	0
P09.19		Setting range: 0.00–10.00s		O
	Lower frequency	0.00Hz-P09.21		
P09.20	point for PID		5.00 Hz	0
F09.20	parameter		5.00 HZ	
	switching			
	Upper frequency	P09.20–P00.03		
P09.21	point for PID		10.00 Hz	0
	parameter		10.00112	
	switching			
P09.22-	Reserved			
P09.28	1 (CSCI VCG			

P10 group—Simple PLC and multi-step speed control

Function	Name	Detailed parameter description	Default	Modify
code	Name	Betailed parameter description	value	inoung
P10.00		0: Stop after running once; the VFD stops		
		automatically after running for one cycle, and it can		
		be started only after receiving running command.		
	Simple PLC mode	1: Keep running in the final value after running		
		once; The VFD keeps the running frequency and	0	0
		direction of the last section after a single cycle.		
		2: Cyclic running; the VFD enters the next cycle		
		after completing one cycle until receiving stop		
		command and stops.		
	Circuita DI O	0: No memory after power down		
P10.01	Simple PLC	1: Memory after power down; PLC memories its	0	0
	memory selection	running stage and running frequency before power down.		
D40.00	Multi-step speed 0	down.	0.00/	
P10.02		Setting range of the frequency in 0–15 steps are -	0.0%	0
P10.03	Running time of	300.0–300.0%, 100% corresponds to Max. output	0.0s(min)	0
D.10.01	step 0	frequency P00.03.	0.00/	
P10.04	Multi-step speed 1	Setting range of the running time in 0–15 steps are	0.0%	0
P10.05	Running time of	0.0–6553.5s (min), the time unit is determined by	0.0s(min)	0
	step 1	P10.37.		
P10.06	Multi-step speed 2	When simple PLC operation is selected, it is	0.0%	0
P10.07	Running time of	required to set P10.02–P10.33 to determine the	0.0s(min)	0
D40.00	step 2	running frequency and running time of each step.	0.00/	
P10.08	Multi-step speed 3	Note: The symbol of multi-step speed determines	0.0%	0
P10.09	Running time of step 3	the running direction of simple PLC, and the	0.0s(min)	0
P10.10	Multi-step speed 4	negative value means reverse running. Deceleration time P10.28 (two sections)	0.0%	0
P10.11	Running time of	P10.04 P10.30	0.0s(min)	0
1 10.11	step 4	P10.02	0.03(11111)	O
P10.12	Multi-step speed 5	Acceleration time (two sections)	0.0%	0
P10.13	Running time of	P10.06	0.0s(min)	0
1 10.13	step 5	P10.03 P10.05 P10.07 P10.31 P10.33	0.03(11111)	U
P10.14	Multi-step speed 6	When selecting multi-step speed running, the	0.0%	0
P10.15	Running time of	multi-step speed is within the range of -fmax-fmax,	0.0s(min)	0
	step 6	and it can be set continuously. The start/stop of	` ′	
P10.16	Multi-step speed 7	and it can be set continuously. The start stop of	0.0%	0

Function code	Name	Detailed parameter description	Default value	Modify
P10.17	Running time of step 7	multi-step run is also determined by P00.01. The VFD supports the setting of speeds of 16	0.0s(min)	0
P10.18	Multi-step speed 8	steps, which are set by combined codes of multi-	0.0%	0
P10.19	Running time of step 8	step terminals 1–4 (set by S terminals, corresponding to function codes P05.01–P05.06)	0.0s(min)	0
P10.20	Multi-step speed 9	and correspond to multi-step speeds 0–15.	0.0%	0
P10.21	Running time of step 9	Output frequency	0.0s(min)	0
P10.22	Multi-step speed 10		0.0%	0
P10.23	Running time of step 10	terminal 1 ON ON ON ON ON ON ON t	0.0s(min)	0
P10.24	Multi-step speed 11	terminal 2 dN dN dN dN t	0.0%	0
P10.25	Running time of step 11	terminal 4	0.0s(min)	0
P10.26	Multi-step speed 12	When terminal 1, terminal 2, terminal 3 and terminal 4 are OFF, the frequency input mode is	0.0%	0
P10.27	Running time of step 12	set by P00.06 or P00.07. When terminal 1, terminal 2, terminal 3 and terminal 4 are not all	0.0s(min)	0
P10.28	Multi-step speed 13	OFF, the frequency set by multi-step speed will	0.0%	0
P10.29	Running time of step 13	prevail, and the priority of multi-step setting is higher than that of the keypad, analog, high-speed	0.0s(min)	0
P10.30	Multi-step speed 14	pulse, PID, and communication settings. The relation between terminals 1–4 are shown in	0.0%	0
P10.31	Running time of	the table below. Terminal 1 OFF ON OFF ON OFF ON OFF ON	0.0s(min)	0
P10.32	step 14 Multi-step speed 15	Terminal 2 OFF OFF ON ON OFF OFF ON	0.0%	0
	Running time of	Terminal 4 OFF OFF OFF OFF OFF OFF OFF		
	step 15	Step 0 1 2 3 4 5 6 7		
		Terminal 1 OFF ON OFF ON OFF ON OFF ON		
P10.33		Terminal 2 OFF OFF ON ON OFF OFF ON ON	0.0s(min)	0
		Terminal 3 OFF OFF OFF OFF ON ON ON ON		
		Terminal 4 ON ON ON ON ON ON ON		
		Step 8 9 10 11 12 13 14 15		

Function code	Name		Deta	ailed p	arame	ter de	scrip	tion		Default value	Modify	
	Acceleration/dec	Detaile	d illust	ration	is shov	vn in t	he tab	le bel	ow.			
	eleration time of	Function	Binary		Step	ACC/ DEC	ACC/ DEC	ACC/ DEC	ACC/ DEC			
P10.34	steps 0-7 of	code	Dilialy		number	time 1	time 2	time 3	time 4	0x0000	0	
	simple PLC		BIT1	BIT0	0	00	01	10	11			
			BIT3	BIT2	1	00	01	10	11			
			BIT5	BIT4	2	00	01	10	11			
		D40.04	BIT7	ВІТ6	3	00	01	10	11			
		P10.34	ВІТ9	віт8	4	00	01	10	11			
			BIT11	BIT10	5	00	01	10	11			
			BIT13	BIT12	6	00	01	10	11			
			BIT15	BIT14	7	00	01	10	11			
			BIT1	BIT0	8	00	01	10	11			
			ВІТ3	BIT2	9	00	01	10	11			
			BIT5	BIT4	10	00	01	10	11			
	Acceleration/dec eleration time of steps 8–15 of simple PLC		BIT7	BIT6	11	00	01	10	11			
		P10.35	BIT9	BIT8	12	00	01	10	11			
P10.35			BIT11	BIT10	13	00	01	10	11	0x0000	0	
			BIT13	BIT12	14	00	01	10	11			
		simple PLC		BIT15	BIT14	15	00	01	10	11		
			Select	corres	pondir	ng acce	eleration	on/dec	elerat	ion		
		time, a		•	-							
		hexade	ecimal	numbe	er, final	ly, set	corre	spond	ling			
		functio	n code	١.					_			
		Accele	ration/	decele	ration	time 1	is set	by P	00.11			
		and P0	0.12;	Accele	ration/o	decele	ration	time	2 is set			
		by P08	.00 an	d P08	.01; Ac	celera	tion/d	eceler	ation			
		time 3	is set l	y P08	.02 an	d P08	.03; A	cceler	ation			
		/decele	ration	time 4	is set	by P0	8.04 a	nd PO	8.05.			
		Setting	range	: 0x00	00–0xI	FFFF						
		0: Rest	art fro	m step	0 in m	ulti-st	ep spe	eed ru	ınning,			
		namely	if the	VFD s	tops d	uring r	unnin	g (cau	ised by			
		stop co	mman	ıd, faul	lt or po	wer do	own),	it will ı	run			
P10.36		from th	e first	step a	fter res	tart.						
	PLC restart mode	start mode 1: Continue running from the step frequency when				when	0	0				
		interru	otion o	ccurre	d, nam	ely if t	he VF	D sto	ps			
		during	runnin	g (cau	sed by	stop (comm	and o	r fault),			
		it will re	ecord t	he run	ning tir	ne of	currer	it step	, and			
		enters	this ste	ep auto	omatica	ally aft	er res	tart, th	nen			

Function code	Name	Detailed parameter description	Default value	Modify
		continue running at the frequency defined by this		
		step in the remaining time.		
		0: s; The running time of each step is counted in		
P10.37	Multi-step time	seconds.	0	(O)
P10.37	unit	1: min; The running time of each step is counted in	U	0
		minutes.		

P11 group—Protection parameters

Function code	Name	Detailed parameter description	Default value	Modify
P11.00	Phase-loss protection	0x000–0x111 Ones: 0: Disable software input phase loss protection 1: Enable software input phase loss protection Tens: 0: Disable output phase loss protection 1: Enable output phase loss protection Hundreds: 0: Disable hardware input phase loss protection 1: Enable hardware input phase loss protection 1: Enable hardware input phase loss protection Note: Except that the default value for UMI-B7 575V is 0x011, the default values for other models are 0x110.	0x110	0
P11.01	Frequency-drop at transient power down	0: Disable 1: Enable	0	0
P11.02	Energy braking in standby state	0: Enable 1: Disable	0	0
P11.03	Overvoltage stall protection	0: Disable 1: Enable DC bus voltage V Overvoltage stall threshold Output frequency	1	0

Function code	Name	Detailed parameter description	Default value	Modify
		120–150% (standard bus voltage) (220V)	120%	
P11.04	Overvoltage stall	120–150% (standard bus voltage) (460V)	120%	0
	protection voltage	120–150% (standard bus voltage) (575V)	120%	
P11.05	Current-limit selection	During accelerated running, as the load is too large, the actual acceleration rate of motor is lower than that of output frequency, if no measures are taken, the VFD may trip due to overcurrent during acceleration. 0x00–0x11 Ones: Current-limit action selection 0: Invalid 1: Always valid Tens: Hardware current-limit overload alarm selection 0: Valid 1: Invalid	01	0
P11.06	Automatic current-limit level	Current-limit protection function detects output current during running, and compares it with the	160.0%	0
P11.07	Frequency-drop rate during current limit	current-limit level defined by P11.06, if it exceeds the current-limit level, the VFD will run at stable frequency during accelerated running, or run in decreased frequency during constant-speed running; if it exceeds the current-limit level continuously, the VFD output frequency will drop continuously until reaching lower limit frequency. When the output current is detected to be lower than the current-limit level again, it will continue accelerated running. Current-limit output current A Output frequency fre	10.00 Hz/s	©

Function code	Name	Detailed parameter description	Default value	Modify
		Setting range of P11.07: 0.00–50.00Hz/s		
P11.08	VFD or motor overload/ underload pre- alarm	Ox0000–0x1134 Ones place: 0: Motor overload/underload pre-alarm, relative to rated motor current 1: VFD overload/underload pre-alarm, relative to rated VFD output current 2: VFD output torque overload/underload pre-alarm, relative to rated motor torque 3: Motor overload/underload pre-alarm. The overload is relative to the motor rated current; while the underload is relative to the motor rated power. 4: VFD overload/underload pre-alarm. The overload is relative to the VFD rated current; while the underload is relative to the VFD rated power. Tens place: 0: The VFD continues running after overload/underload alarm. 1: The VFD continues running after underload alarm, and stops running after overload fault. 2: The VFD continues running after overload fault. 3: The VFD stops running after overload fault. 3: The VFD stops running after overload fault. 1: Detect during constant-speed running Thousands place: VFD overload current reference selection 0: Related to current calibration coefficient 1: Unrelated to current calibration coefficient	0x0000	0
P11.09	Overload pre- alarm detection level	If the VFD or motor output current is larger than the overload pre-alarm detection level (P11.09), and the duration exceeds the overload pre-alarm	G model: 150% P model: 120%	0
P11.10	Overload pre- alarm detection time	detection time (P11.10), overload pre-alarm signal will be outputted.	1.0s	0

Function code	Name	Detailed parameter description	Default value	Modify
		Overload pre-alarm time t Y1. R01, R02 Pre-alarm time t Time t Pre-alarm time t Setting range of P11.09: P11.11–200% (relative value determined by the ones place of P11.08) Setting range of P11.10: 0.1–3600.0s		
P11.11	Underload pre- alarm detection level	Underload pre-alarm signal will be outputted if the output current of the VFD or motor is lower than underload pre-alarm detection level (P11.11), and	50%	0
P11.12	Underload pre- alarm detection time	the duration exceeds underload pre-alarm detection time (P11.12). Setting range of P11.11: 0–P11.09 (relative value determined by the ones place of P11.08) Setting range of P11.12: 0.1–3600.0s	1.0s	0
P11.13	Fault output terminal action during fault	Used to set the action of fault output terminals during undervoltage and fault reset. 0x00–0x11 Ones: 0: Act during undervoltage fault 1: Do not act during undervoltage fault Tens: 0: Act during fault reset 1: Do not act during fault reset	0x00	0
P11.14	Speed deviation detection value	0.0–50.0% Used to set the speed deviation detection value.	10.0%	0
P11.15	Speed deviation detection time	Used to set the speed deviation detection time. Note: Speed deviation protection will be invalid if P11.15 is set to 0.0.	2.0s	0

Function code	Name	Detailed parameter description	Default value	Modify
		Actual detection value Set detection value Set detection value 11 < 12, so the VFD continues running t2=P11.15 Setting range: 0.0—10.0s		
P11.16	Automatic frequency- reduction during voltage drop	0–1 0: Invalid 1: Valid	0	0
P11.17	Proportional coefficient of voltage regulator during undervoltage stall	Used to set the proportional coefficient of the bus voltage regulator during undervoltage stall. Setting range: 0–1000	100	0
P11.18	Integral coefficient of voltage regulator during undervoltage stall	Used to set the integral coefficient of the bus voltage regulator during undervoltage stall. Setting range: 0–1000	40	0
P11.19	Proportional coefficient of current regulator during undervoltage stall	Used to set the proportional coefficient of the active current regulator during undervoltage stall. Setting range: 0–1000	25	0
P11.20	Integral coefficient of current regulator during undervoltage stall	Used to set the integral coefficient of the active current regulator during undervoltage stall. Setting range: 0–2000	150	0
P11.21	Proportional coefficient of voltage regulator during overvoltage stall	Used to set the proportional coefficient of the bus voltage regulator during overvoltage stall. Setting range: 0–1000	60	0
P11.22	Integral	Used to set the integral coefficient of the bus	10	0

Function code	Name	Detailed parameter description	Default value	Modify
	coefficient of	voltage regulator during overvoltage stall.		
	voltage regulator	Setting range: 0–1000		
	during			
	overvoltage stall			
	Proportional			
	coefficient of	Used to set the proportional coefficient of the		
P11.23	current regulator	active current regulator during overvoltage stall.	60	0
	during	Setting range: 0–1000		
	overvoltage stall			
	Integral			
	coefficient of	Used to set the integral coefficient of the active		
P11.24	current regulator	current regulator during overvoltage stall.	250	0
	during	Setting range: 0–2000		
	overvoltage stall			
		0: Disabled		
		1: Enabled		
		When this parameter is set to 0, the overload		
		timing value is reset to zero after the VFD is		
		stopped. In this case, the determination of VFD		
	Enable VFD overload integral	overload takes more time, and therefore the		
P11.25		effective protection over the VFD is weakened.	0	0
		When this parameter is set to 1, the overload		
		timing value is not reset, and the overload timing		
		value is accumulative. In this case, the		
		determination of VFD overload takes less time,		
		and therefore the protection over the VFD can be		
		performed more quickly.		
P11.26	Reserved			
		0x00–0x11		
		Ones place:		
	VE vibration	0: Method 1		
P11.27	VF vibration	1: Method 2	0x00	0
	control method	Tens place:		
		0: Reserved		
		1: Reserved		
	SPO switch-on	0.0–60.0(s)		
P11.28	detection delay	Note: The SPO detection is started only after the	5.0	0
	time	VFD runs for the delay time P11.28 to avoid false		

Function code	Name	Detailed parameter description	Default value	Modify
		alarms caused by the unstable frequency.		
P11.29	SPO unbalance factor	0–10	6	0
P11.30	Reserved			
P11.31	Fault severity group 1	0x0000-0x3333 Thousands place/Hundreds place/Tens	0x0000	0
P11.32	Fault severity group 2	place/Ones place: 0: Report the fault	0x0000	0
P11.33	Fault severity group 3	Report the fault after deceleration to stop Pre-alarm, with the action executed according to	0x0000	0
P11.34	Fault severity group 4	P11.51 3: Screen out the fault	0x0000	0
P11.35	Fault severity group 5	Note: Different fault actions are taken for different fault severities. The first 10 faults are not grouped	0x0000	0
P11.36	Fault severity group 6	by severity, but each four of the subsequent faults are grouped by severity in ascending order from	0x0000	0
P11.37	Fault severity group 7	right to left in hexadecimal format, that is, from the ones place to the thousands place (for example,	0x0000	0
P11.38	Fault severity group 8	the ones place of fault severity group 1 corresponds to fault 11).	0x0000	0
P11.39	Fault severity group 9	Group 1: Faults 11–14 (OL1, OL2, SPI, SPO) Group 2: Faults 15–18 (OH1, OH2, EF, CE)	0x0000	0
P11.40	Fault severity group 10	Group 3: Faults 19–22 (ItE, tE, EEP, PIDE) Group 4: Faults 23–26 (bCE, END, OL3, PCE)	0x0000	0
P11.41	Fault severity group 11	Group 5: Faults 27–30 (UPE, DNE, E-DP, E-NET) Group 6: Faults 31–34 (E-CAN, ETH1, ETH2, dEu)	0x0000	0
P11.42	Fault severity group 12	Group 7: Faults 35–38 (STo, LL, ENC1o, ENC1d) Group 8: Faults 39–42 (ENC1Z, STO, STL1,	0x0000	0
P11.43	Fault severity group 13	STL2) Group 9: Faults 43–46 (STL3, CrCE, P-E1, P-E2)	0x0000	0
P11.44	Fault severity group 14	Group 10: Faults 47–50 (P-E3, P-E4, P-E5, P-E6) Group 11: Faults 51–54 (P-E7, P-E8, P-E9, P-E10)	0x0000	0
P11.45	Fault severity group 15	Group 12: Faults 55–58 (E-Err, ENCU, E-PN, SECAN)	0x0000	0
P11.46	Fault severity group 16	Group 13: Faults 59–62 (OT, F1-Er, F2-Er, F3-Er) Group 14: Faults 63–66 (C1-Er, C2-Er, C3-Er, E-	0x0000	0
P11.47	Fault severity group 17	CAT) Group 15: Faults 67–70 (E-BAC, E-DEV, S-Err,	0x0000	0

Function code	Name	Detailed parameter description	Default value	Modify
P11.48	Fault severity group 18	OtE1) Group 16: Faults 71–75 (OtE2, E-EIP, E-PAO, E-	0x0000	0
P11.49	Fault severity group 19	Al1) Group 17: Faults 75–78 (E-Al2, E-Al3, E-brF, E-	0x0000	0
P11.50	Fault severity group 20	StK) Group 18: Faults 79–82 (E-Lst, Reserved, Reserved, Reserved) Group 19: Faults 83–86 (Reserved, Reserved, Reserved, Reserved) Group 20: Faults 87–90 (Reserved, Reserved, Reserved, Reserved)	0x0000	0
P11.51	Action for fault pre-alarm	 0-4 0: Run at the set frequency 1: Run at the output frequency at the time of fault 2: Run at the frequency upper limit 3: Run at the frequency lower limit 4: Run at the frequency reserved for exception 	0	0
P11.52	Frequency reserved for exception	0.00Hz-P00.03	0.00Hz	0
P11.53	Fire mode function	0-2 0: Invalid 1: Fire mode 1 2: Fire mode 2 When P11.53=0, the fire mode is invalid, and the normal running mode is used. In this case, the VFD stops when encountering a fault. When the fire mode function is valid, the VFD runs at the speed specified by P11.54. When fire mode 1 is selected, the VFD always runs except when the VFD has been damaged. When fire mode 2 is selected, the VFD always runs, but the VFD stops when encountering OUT1, OUT2, OUT3, OC1, OC2, OC3, OV1, OV2, OV3, or SPO. Note: Terminal control must be used for a fire mode. When the fire mode has lasted 5 minutes, it is reset, and no warranty of repair is processed.	0	©

Function code	Name	Detailed parameter description	Default value	Modify
P11.54	Running frequency in fire mode	0.00Hz–P00.03 (Max. output frequency)	50.00Hz	0
P11.55	Fire mode flag	0–1 Note: When the fire mode has lasted 5 minutes, it is reset, and no warranty of repair is processed.	0	•
P11.56	Software detection method for input phase loss	O: Using a sine-wave orthogonal function for detection at 100Hz frequency component 1: Using a square-wave orthogonal function for detection at 100Hz frequency component	1	0
P11.57	Software detection limited value for input phase loss	Peak value of bus voltage fluctuation at 100Hz frequency component 0–200.0V	40.0V	0
P11.58	Software detection time for input phase loss	0–20.0s	2.0s	0
P11.59	Exciting current limit in flux weakening	0.0–100.0%	100.0%	0
P11.60	Detection time of stalling in V/F control	0.000–60.000s	5.000	0
P11.61	Detection time of out-of-step in V/F control	0.000–60.000s Note: Setting it to 0.000s indicates no detection.	5.000	0

P12 group—Parameters of motor 2

Function code	Name	Detailed parameter description	Default value	Modify
P12.00	Type of motor 2	Asynchronous motor Synchronous motor	0	0
P12.01	Rated power of asynchronous motor 2	0.1–3000.0kW	Depends on model	0
P12.02	Rated frequency of asynchronous motor 2	0.01Hz–P00.03 (Max. output frequency)	60.00Hz	0
P12.03	Rated speed of	1–60000rpm	1700rpm	0

Function code	Name	Detailed parameter description	Default value	Modify
	asynchronous motor 2			
P12.04	Rated voltage of asynchronous motor 2	0–1200V	Depends on model	0
P12.05	Rated current of asynchronous motor 2	0.8–6000.0A	Depends on model	0
P12.06	Stator resistance of asynchronous motor 2	0.001–65.535Ω	Depends on model	0
P12.07	Rotor resistance of asynchronous motor 2	0.001–65.535Ω	Depends on model	0
P12.08	Leakage inductance of asynchronous motor 2	0.1–6553.5mH	Depends on model	0
P12.09	Mutual inductance of asynchronous motor 2	0.1–6553.5mH	Depends on model	0
P12.10	No-load current of asynchronous motor 2	0.1–6553.5A	Depends on model	0
P12.11	Magnetic saturation coefficient 1 of iron core of asynchronous motor 2	0.0–100.0%	80%	0
P12.12	Magnetic saturation coefficient 2 of iron core of asynchronous motor 2	0.0–100.0%	68%	0
P12.13	Magnetic	0.0–100.0%	57%	0

Function code	Name	Detailed parameter description	Default value	Modify	
	saturation				
	coefficient 3 of				
	iron core of				
	asynchronous				
	motor 2				
	Magnetic				
	saturation				
P12.14	coefficient 4 of	0.0–100.0%	40%	0	
1 12.14	iron core of	0.0-100.070	4070		
	asynchronous				
	motor 2				
	Rated power of		Depends		
P12.15	synchronous	0.1–3000.0kW	on model	0	
	motor 2		on model		
	Rated frequency				
P12.16	of synchronous	0.01Hz–P00.03 (Max. output frequency)	60.00Hz	0	
	motor 2				
	Number of pole	1–128			
P12.17	pairs of		2	0	
1 12.17	synchronous	1 120	_		
	motor 2				
	Rated voltage of		Depends		
P12.18	synchronous	0–1200V	on model	0	
	motor 2		on model		
	Rated voltage of		Depends		
P12.19	synchronous	0.8–6000.0A	on model	0	
	motor 2				
	Stator resistance		Depends		
P12.20	of synchronous	0.001–65.535Ω	on model	0	
	motor 2				
	Direct-axis				
P12.21	inductance of	0.01–655.35mH	Depends	0	
	synchronous		on model		
	motor 2				
	Quadrature-axis				
P12.22	inductance of	0.01–655.35mH	Depends	0	
	synchronous		on model		
	motor 2				

Function code	Name	Detailed parameter description	Default value	Modify
P12.23	Counter-emf constant of synchronous motor 2	0-10000V	300V	0
P12.24	Initial pole position of synchronous motor 2	0x0000-0xFFFF	0x0000	•
P12.25	Identification current of synchronous motor 2	0%–50% (of motor rated current)	10%	•
P12.26	Overload protection of motor 2	No protection Common motor (with low-speed compensation) Frequency-variable motor (without low-speed compensation)	2	0
P12.27	Overload protection coefficient of motor 2	Motor overload multiples M = lout/(lnxK) In is rated motor current, lout is VFD output current, K is motor overload protection coefficient. The smaller the K, the larger the value of M, the easier the protection. When M=116%, protection is performed after motor overload lasts for 1 hour; when M=150%, protection is performed after motor overload lasts for 12 minutes; when M=180%, protection is performed after motor overload lasts for 5 minutes; when M=200%, protection is performed after motor overload lasts for 60 seconds; and when M≥ 400%, protection is performed immediately. Time (min) Current overload Time (min) Setting range: 20.0%−120.0%	100.0%	0

Function code	Name	Detailed parameter description	Default value	Modify
P12.28	Power display calibration coefficient of motor 2	0.00–3.00	1.00	0
P12.29	Parameter display of motor 2	O: Display based on the motor type; under this mode, only parameters related to current motor type will be displayed. 1: Display all; under this mode, all the parameters will be displayed.	0	0
P12.30	System inertia of motor 2	0–30.000kgm²	0.000	0
P12.31– P12.32	Reserved			

P13 group—Control parameters of synchronous motor

Function code	Name	Detailed parameter description	Default value	Modify
P13.00	Reduction rate of the pull-in current of synchronous motor	Used to set the reduction rate of the input reactive current. When the active current of the synchronous motor increases to some extent, the input reactive current can be reduced to improve the power factor of the motor. Setting range: 0.0%–100.0% (of the rated current of the motor)	80.0%	0
P13.01	Initial pole detection mode	No detection High-frequency current injection Pulse superimposition	0	0
P13.02	Pull-in current 1	Pull-in current is the pole position orientation current; pull-in current 1 is valid within the lower limit of pull-in current switchover frequency threshold. If you need to increase the starting torque, increase the value of this function code properly. Setting range: 0.0%–100.0% (of the motor rated current)	20.0%	0
P13.03	Pull-in current 2	Pull-in current is the pole position orientation current; pull-in current 2 is valid within the upper limit of pull-in current switchover frequency threshold, and you do not need to change pull-in	10.0%	0

Function code	Name	Detailed parameter description	Default value	Modify
		current 2 under common situations. Setting range: 0.0%–100.0% (of the motor rated current)		
P13.04	Switchover frequency of input current	0.0–200.0% (of the motor rated frequency)	20.0%	0
P13.05	High-frequency superposition frequency	200Hz-1000Hz	500Hz	©
P13.06	Pulse current setting	Used to set the pulse current threshold when the initial magnetic pole position is detected in the pulse mode. The value is a percentage relative to the rated current of the motor. Setting range: 0.0–300.0% (of the rated voltage of the motor)	100.0%	0
P13.07	Control parameter 0	0.0–400.0	0.0	0
P13.08	Control parameter 1	0-0xFFFF	0	0
P13.09	Frequency threshold of phase-lock loop switch-in	This parameter is used to set the frequency threshold for enabling the counter-electromotive force phase-locked loop in SVC 0. When the running frequency is lower than the value of this parameter, the phase-locked loop is disabled; and when the running frequency is higher than that, the phase-locked loop is enabled. Setting range: 0.00–655.35	50.00	0
P13.10	Initial compensation angle of synchronous motor	0.0–359.9°	0.0°	0
P13.11	Maladjustment detection time	Used to adjust the responsiveness of anti- maladjustment function. If the load inertia is large, increase the value of this parameter properly, however, the responsiveness may slow down accordingly. Setting range: 0.0–10.0s	0.5s	0

Function code	Name	Detailed parameter description	Default value	Modify
P13.12	High-frequency compensation coefficient of synchronous motor	This parameter is valid when the motor speed exceeds the rated speed. If motor oscillation occurred, adjust this parameter properly. Setting range: 0.0–100.0%	0.0%	0
P13.13	High-frequency injection current	0-300.0% (of the rated VFD output current)	20.0%	0

P14 group—Serial communication function

Function code	Name	Detailed parameter description	Default value	Modify
P14.00	Local communication address	Setting range: 1–247 When the master is writing frames, and the slave communication address is set to 0, it is the broadcast communication address, and all the slaves on the Modbus bus will accept this frame, but the slave never responds. Local communication address is unique in the communication network, which is the basis for point-to-point communication between the upper computer and the VFD. Note: The slave address cannot be set to 0.	1	0
P14.01	Communication baud rate setting	Used to set the data transmission speed between upper computer and the VFD. 0: 1200bps 1: 2400bps 2: 4800bps 3: 9600bps 4: 19200bps	4	0
P14.02	Data bit check setting	The data format of upper computer must be the same with the VFD; otherwise, communication cannot be performed.	1	0

Function code	Name	Detailed parameter description	Default value	Modify
		0: No parity check (N, 8, 1) for RTU		
		1: Even parity (E, 8, 1) for RTU		
		2: Odd parity (O, 8, 1) for RTU		
		3: No parity check (N, 8, 2) for RTU		
		4: Even parity (E, 8, 2) for RTU		
		5: Odd parity (O, 8, 2) for RTU		
		0–200ms		
		It refers to the time interval from when the data is		
		received by the VFD to the moment when the data		
		is sent to the upper computer. If the response		
D. (. 0.0	Communication	delay is less than the system processing time, the	_	
P14.03	response delay	response delay will be subject to system	5	0
		processing time; if the response delay is longer		
		than the system processing time, data will be sent		
		to the upper computer at a delay after data		
		process is done by system.		
	Communication timeout period	0.0 (invalid)–60.0s		
		This parameter will be invalid if it is set to 0.0;		
		When it is set to a non-zero value, if the time		
		interval between current communication and the		
		next communication exceeds the communication		
P14.04		timeout period, the system will report "485	0.0s	0
		communication fault" (CE).		
		Under common situations, it is set to 0.0. In		
		systems which have continuous communication,		
		you can monitor the communication condition by		
		setting this parameter.		
		0: Alarm and coast to stop		
		1: Do not alarm and continue running		
P14.05	Transmission	2: Do not alarm and stop as per the stop mode	0	0
P 14.05	error processing	(under communication control mode only)	U	
		3: Do not alarm and stop as per the stop mode		
		(under all control modes)		
		0x000-0x111		
	Modbus	Ones: Write operation response selection		
P14.06	communication	0: Write operation has response	0x000	0
F 14.00	processing action	1: Write operation has no response	UXUUU	
	processing action	Tens: Communication password protection		
		selection		

Function code	Name	Detailed parameter description	Default value	Modify
Code		0: Communication password protection is invalid	value	
		1: Communication password protection is valid		
		Hundreds: User-defined address validity		
		0: User-defined addresses of P14.07 and P14.08		
		are invalid.		
		1: User-defined addresses of P14.07 and P14.08		
		are valid.		
	User-defined			
P14.07	running	0x0000-0xFFFF	0x2000	0
	command			
	address			
	User-defined			
P14.08	frequency setting	0x0000–0xFFFF	0x2001	0
	address			
	Modbus TCP			
P14.09	communication	0.0–60.0s	5.0	0
	timeout time			
	Enabling program	0–1		
P14.10	upgrade through	0: Disable	0	0
	RS485	1: Enable		
P14.11	Bootloader	0.00–655.35	0.00	
	software version	0.00	0.00	
	Displaying no	0–1		
P14.12	upgrade	0: Display	0	0
	bootloader fault	1: Do not display		
P14.13-	Reserved			
P14.47	reserved			
		0x00–0x12 Ones place: Channel for mapping function codes		
	Channel	to PZDs		
	selection for	0: Reserved		
P14.48	mapping between	2: Group P16	0x12	0
	PZDs and	Tens place: Save function at power failure		
	function codes	0: Disable		
	Mannado	1: Enable		
D44.46	Mapped function	00000 0	00000	
P14.49	code of received	UXUUUU-UXFFFF	0x0000	0
	PZD2			
P14.50	Mapped function	0x0000-0xFFFF	0x0000	0
	code of received			

Function code	Name	Detailed parameter description	Default value	Modify
	PZD3			
	Mapped function			
P14.51	code of received	0x0000-0xFFFF	0x0000	0
	PZD4			
	Mapped function			
P14.52	code of received	0x0000=0xFFFF	0x0000	0
	PZD5 Mapped function			
P14.53	code of received	0x0000_0xFFFF	0x0000	0
1 14.00	PZD6		σχοσσο	
	Mapped function			
P14.54	code of received	0x0000-0xFFFF	0x0000	0
	PZD7			
	Mapped function			
P14.55	code of received	0x0000-0xFFFF	0x0000	0
	PZD8			
D44.50	Mapped function	0.0000 0.5555	0 0000	
P14.56	code of received PZD9	0x0000-0xFFFF	0x0000	0
	Mapped function			
P14.57	code of received	0x0000-0xFFFF	0x0000	0
	PZD10			
	Mapped function			
P14.58	code of received	0x0000-0xFFFF	0x0000	0
	PZD11			
	Mapped function			
P14.59		0x0000-0xFFFF	0x0000	0
	PZD12			
P14.60	Mapped function code of sent	0x0000-0xFFFF	0x0000	0
1 14.00	PZD2	0.0000-0.1111	0.0000	
	Mapped function			
P14.61	code of sent	0x0000_0xFFFF	0x0000	0
	PZD3			
	Mapped function			
P14.62	code of sent	0x0000_0xFFFF	0x0000	0
	PZD4			
P14.63	Mapped function	0x0000–0xFFFF	0x0000	0

Function code	Name	Detailed parameter description	Default value	Modify
	code of sent PZD5			
P14.64	Mapped function code of sent PZD6	0x0000-0xFFFF	0x0000	0
P14.65	Mapped function code of sent PZD7	0x0000-0xFFFF	0x0000	0
P14.66	Mapped function code of sent PZD8	0x0000-0xFFFF	0x0000	0
P14.67	Mapped function code of sent PZD9	0x0000-0xFFFF	0x0000	0
P14.68	Mapped function code of sent PZD10	0x0000-0xFFFF	0x0000	0
P14.69	Mapped function code of sent PZD11	0x0000-0xFFFF	0x0000	0
P14.70	Mapped function code of sent PZD12	0x0000-0xFFFF	0x0000	0

P15 group—Functions of communication expansion card 1

Function code	Name	Detailed parameter description	Default value	Modify
P15.00	Reserved			
P15.01	Module address	0–127	2	0
P15.02	Received PZD2	0–31	0	0
P15.03	Received PZD3	0: Invalid	0	0
P15.04	Received PZD4	1: Set frequency (0–Fmax. Unit: 0.01Hz)	0	0
P15.05	Received PZD5	2: PID reference (-1000–1000, in which 1000	0	0
P15.06	Received PZD6	corresponds to 100.0%) 3: PID feedback (-1000–1000, in which 1000	0	0
P15.07	Received PZD7	corresponds to 100.0%)	0	0
P15.08	Received PZD8	4: Torque setting (-3000–+3000, in which 1000	0	0
P15.09	Received PZD9	corresponds to 100.0% of the motor rated current)	0	0

Function code	Name	Detailed parameter description	Default value	Modify
P15.10	Received PZD10	5: Setting of the upper limit of forward running	0	0
P15.11	Received PZD11	frequency (0–Fmax. Unit: 0.01 Hz)	0	0
P15.12	Received PZD12	6: Setting of the upper limit of reverse running frequency (0–Fmax. Unit: 0.01 Hz) 7: Upper limit of electromotive torque (0–3000, in which 1000 corresponds to 100.0% of the motor rated current) 8: Upper limit of braking torque (0–3000, in which 1000 corresponds to 100% of the motor rated current) 9: Virtual input terminal command (Range: 0x000–0x3FF, corresponding to S8/S7/S6/S5/HDIB/HDIA/S4/S3/S2/S1) 10: Virtual output terminal command (Range: 0x00–0x0F, corresponding to RO2/RO1/HDO/Y1) 11: Voltage setting (special for V/F separation) (0–1000, in which 1000 corresponds to 100% of the motor rated voltage) 12: AO1 output setting 1 (-1000–+1000, in which 1000 corresponds to 100.0%) 13: AO2 output setting 2 (-1000–1000, in which 1000 corresponds to 100.0%) 14: MSB of position reference (signed) 15: LSB of position reference (unsigned) 16: MSB of position feedback (signed) 17: LSB of position feedback (unsigned) 18: Position feedback setting flag (position feedback can be set only after this flag is set to 1 and then to 0) 19: Function parameter mapping (PZD2–PZD12 correspond to P14.49–P14.59) 20–31: Reserved	0	0
P15.13	Sent PZD2	0–47	0	0
P15.14	Sent PZD3	0: Invalid	0	0
P15.15	Sent PZD4	1: Running frequency (x100, Hz)	0	0
P15.16	Sent PZD5	2: Set frequency (x100, Hz) 3: Bus voltage (x10, V)	0	0
P15.17	Sent PZD6	4: Output voltage (x1, V)	0	0
P15.18	Sent PZD7	5: Output current (x10, A)	0	0

Function code	Name	Detailed parameter description	Default value	Modify
P15.19	Sent PZD8	6: Actual output torque (x10, %)	0	0
P15.20	Sent PZD9	7: Actual output power (x10, %)	0	0
P15.21	Sent PZD10	8: Rotation speed of running (x1, rpm)	0	0
		9: Linear speed of running (x1, m/s)		_
P15.22	Sent PZD11	10: Ramp reference frequency	0	0
P15.23	Sent PZD12	11: Fault code		
		12: Al1 input (x100, V)		
		13: Al2 input (x100, V)		
		14: Al3 input (x100, V)		
		15: HDIA frequency value (x1000, kHz)		
		16: Terminal input status		
		17: Terminal output status		
		18: PID reference (x10, %)		
		19: PID feedback (x10, %)		
		20: Motor rated torque	0	
		21: MSB of position reference (signed)		
		22: LSB of position reference (unsigned)		0
		23: MSB of position feedback (signed)		
		24: LSB of position feedback (unsigned)		
		25: Status word		
		26: HDIB frequency value (x1000, kHz)		
		27: MSB of PG card pulse feedback		
		28: LSB of PG card pulse feedback		
		29: MSB of PG card pulse reference		
		30: LSB of PG card pulse reference		
		31: Function parameter mapping (PZD2–PZD12		
		correspond to P14.60–P14.70)		
		32: Status word 3		
		33–47: Reserved		
P15.24	Reserved			
	DP			
P15.25	communication	0.0 (invalid)–60.0s	5.0	0
	timeout time			
	CANopen			
P15.26	communication	0.0 (invalid)–60.0s	5.0	0
	timeout time			
	CANopen	0–7		
P15.27	communication	0: 1000kbps	3	0
	baud rate	1: 800kbps		

Function			Default	
code	Name	Detailed parameter description	value	Modify
		2: 500kbps		
		3: 250kbps		
		4: 125kbps		
		5: 100kbps		
		6: 50kbps		
		7: 20kbps		
	Master/slave			
P15.28	CAN	0–127	1	0
F 15.20	communication	0-127	ı	0
	address			
	Master/slave	0: 50Kbps		
	CAN communication baud rate selection	1: 100 Kbps		
P15.29		2: 125Kbps	2	0
1 10.20		3: 250Kbps	_	
		4: 500Kbps		
	0010011011	5: 1M bps		
	Master/slave			
P15.30	CAN	0.0 (invalid)–60.0s	5.0s	0
	communication	()		
	timeout period			
P15.31-	Reserved			
P15.42				
	Communication	0–1		
P15.43	control word	0: Decimal format	0	0
	expression	1: Binary format		
	format			
		0-6		
	Communication	1: Currently identified card (only one)		
P15.44	card control	2: DP card	0	
7 15.44	word/status word	3: PROFINET card	0	0
	display selection	4: Ethernet IP card		
	-	5: Modbus TCP card		
		6: EtherCAT card		

P16 group—Functions of communication expansion card 2

Function code	Name	Detailed parameter description	Default value	Modify
P16.00- P16.01	Reserved			

Function code	Name	Detailed parameter description	Default value	Modify
	Ethernet			
P16.02	monitoring card	0–255	192	0
	IP address 1			
	Ethernet			
P16.03	monitoring card	0–255	168	0
	IP address 2			
	Ethernet			
P16.04	monitoring card	0–255	0	0
	IP address 3			
	Ethernet			
P16.05	monitoring card	0–255	1	0
	IP address 4			
	Ethernet			
P16.06	monitoring card	0–255	255	0
	subnet mask 1			
	Ethernet			
P16.07	monitoring card	0–255	255	0
	subnet mask 2			
	Ethernet			
P16.08	monitoring card	0–255	255	0
	subnet mask 3			
	Ethernet			
P16.09	monitoring card	0–255	0	0
	subnet mask 4			
	Ethernet			
P16.10	monitoring card	0–255	192	0
	gateway 1			
	Ethernet			
P16.11	monitoring card	0–255	168	0
	gateway 2			
	Ethernet			
P16.12	monitoring card	0–255	0	0
	gateway 3			
	Ethernet			
P16.13	monitoring card	0–255	1	0
	gateway 4			
P16.14	Ethernet	0x0000-0xFFFF	0x0000	0
	monitoring	-		

Function code	Name	Detailed parameter description	Default value	Modify
	variable address			
P16.15	Ethernet monitoring variable address 2	0x0000-0xFFFF	0x0000	0
P16.16	Ethernet monitoring variable address 3	0x0000-0xFFFF	0x0000	0
P16.17	Ethernet monitoring variable address 4	0x0000-0xFFFF	0x0000	0
P16.18– P16.23	Reserved			
P16.24	Identification time for the expansion card in card slot 1	0.0–600.0s If it is set to 0.0, identification fault will not be detected.	0.0s	0
P16.25	Identification time for the expansion card in card slot 2	0.0–600.0s If it is set to 0.0, offline fault will not be detected.	0.0s	0
P16.26	Identification time for the expansion card in card slot 3	0.0–600.0s If it is set to 0.0, offline fault will not be detected.	0.0s	0
P16.27	Communication timeout period of expansion card in card slot 1	0.0–600.0s If it is set to 0.0, offline fault will not be detected.	0.0s	0
P16.28	Communication timeout period of expansion card in card slot 2	0.0–600.0s If it is set to 0.0, offline fault will not be detected.	0.0s	0
P16.29	Communication timeout period of	0.0–600.0s If it is set to 0.0, offline fault will not be detected.	0.0s	0

Function code	Name	Detailed parameter description	Default value	Modify
	expansion card in card slot 3			
P16.30	Reserved			
P16.31	PROFINET communication timeout time	0.0-60.0s	5.0s	0
P16.32	Received PZD2	0–31	0	0
P16.33	Received PZD3	0: Invalid	0	0
P16.34	Received PZD4	1: Set frequency (0–Fmax. Unit: 0.01Hz)	0	0
P16.35	Received PZD5	2: PID reference (-1000–1000, in which 1000 corresponds to 100.0%)	0	0
P16.36	Received PZD6	3: PID feedback (-1000–1000, in which 1000	0	0
P16.37	Received PZD7	corresponds to 100.0%)	0	0
P16.38	Received PZD8	4: Torque setting (-3000–+3000, in which 1000	0	0
P16.39	Received PZD9	corresponds to 100.0% of the motor rated current)	0	0
P16.40	Received PZD10	5: Setting of the upper limit of forward running frequency (0–Fmax. Unit: 0.01 Hz)	0	0
P16.41	Received PZD11	, , ,	0	0
P16.42	Received PZD12	frequency (0–Fmax. Unit: 0.01 Hz) 7: Upper limit of electromotive torque (0–3000, in which 1000 corresponds to 100.0% of the motor rated current) 8: Upper limit of braking torque (0–3000, in which 1000 corresponds to 100% of the motor rated current) 9: Virtual input terminal command (Range: 0x000–0x3FF, corresponding to S8/S7/S6/S5/HDIB/HDIA/S4/S3/S2/S1) 10: Virtual output terminal command (Range: 0x00–0x0F, corresponding to RO2/RO1/HDO/Y1) 11: Voltage setting (special for V/F separation) (0–1000, in which 1000 corresponds to 100% of the motor rated voltage) 12: AO1 output setting 1 (-1000–+1000, in which 1000 corresponds to 100.0%) 13: AO2 output setting 2 (-1000–1000, in which 1000 corresponds to 100.0%) 14: MSB of position reference (signed)	0	0

Function code	Name	Detailed parameter description	Default value	Modify
5545		16: MSB of position feedback (signed)	varao	
		17: LSB of position feedback (unsigned)		
		18: Position feedback setting flag (position		
		feedback can be set only after this flag is set to 1		
		and then to 0)		
		19: Function parameter mapping (PZD2–PZD12		
		correspond to P14.49–P14.59)		
		20-31: Reserved		
P16.43	Sent PZD2	0–47	0	0
P16.44	Sent PZD3	0: Invalid	0	0
P16.45	Sent PZD4	1: Running frequency (x100, Hz)	0	0
P16.46	Sent PZD5	2: Set frequency (x100, Hz)	0	0
		3: Bus voltage (x10, V)		
P16.47	Sent PZD6	4: Output voltage (x1, V)	0	0
P16.48	Sent PZD7	5: Output current (x10, A)	0	0
P16.49	Sent PZD8	6: Actual output torque (x10, %)	0	0
P16.50	Sent PZD9	7: Actual output power (x10, %) 8: Rotation speed of running (x1, rpm)	0	0
P16.51	Sent PZD10	9: Linear speed of running (x1, m/s)	0	0
P16.52	Sent PZD11	10: Ramp reference frequency	0	0
	CCIRT ZBTT	11: Fault code		0
P16.53		12: Al1 input (x100, V)		
		13: Al2 input (x100, V)		
		14: Al3 input (x100, V)		
		15: HDIA frequency value (x1000, kHz)		
		16: Terminal input status		
		17: Terminal output status		
		18: PID reference (x10, %)		
		19: PID feedback (x10, %)		
	Sent PZD12	20: Motor rated torque	0	0
		21: MSB of position reference (signed)		
		22: LSB of position reference (unsigned)		
		23: MSB of position feedback (signed)		
		24: LSB of position feedback (unsigned)		
		25: Status word		
		26: HDIB frequency value (x1000, kHz)		
		27: MSB of PG card pulse feedback		
		28: LSB of PG card pulse feedback		
		29: MSB of PG card pulse reference		

Function code	Name	Detailed parameter description	Default value	Modify
		30: LSB of PG card pulse reference		
		31: Function parameter mapping (PZD2–PZD12		
		correspond to P14.60–P14.70)		
		32: Status word 3		
		33–47: Reserved		
P16.54	Ethernet IP communication timeout time	0.0–60.0s	5.0	0
		0–4		
		0: Self-adaptive		
	Ethernet IP	1: 100M full-duplex		
P16.55	communication rate	2: 100M half-duplex	0	0
	idio	3: 10M full-duplex		
		4: 10M half-duplex		
P16.56	Bluetooth pairing code	0–65535	0	•
	3343	0-65535		
		0: No host connection		
P16.57	Bluetooth host	1: Mobile APP	0	•
	type	2: Bluetooth box		
		3–65535: Reserved		
	Industrial	00000110001100		
P16.58	Ethernet	0–255	192	0
1 10.00	communication card IP address 1	200		
	Industrial			
P16.59	Ethernet	0–255	168	0
1 10.55	communication card IP address 2			
	Industrial			
P16.60	Ethernet	0–255	0	0
1 10.00	communication card IP address 3			
	Industrial			
P16.61	Ethernet	0–255	20	0
1 10.01	communication card IP address 4			
	Industrial			
	Ethernet			
P16.62	communication card subnet	0–255	255	0
	mask 1			
P16.63	Industrial			
	Ethernet	0–255	255	0
	communication card subnet	U−∠∪U	200	
	mask 2			

Function code	Name	Detailed parameter description	Default value	Modify
P16.64	Industrial Ethernet communication card subnet mask 3	0–255	255	0
P16.65	Industrial Ethernet communication card subnet mask 4	0–255	0	0
P16.66	Industrial Ethernet communication card gateway 1	0–255	192	0
P16.67	Industrial Ethernet communication card gateway 2	0–255	168	0
P16.68	Industrial Ethernet communication card gateway 3	0–255	0	0
P16.69	Industrial Ethernet communication card gateway 4	0–255	1	0
P16.70	Saving EtherCAT written function codes	0–1 0: Not save 1: Save	0	0
P16.71	Reserved			
P16.72	EtherCAT input unit selection	0–10: The input rotation speed unit is PRM1: The input rotation speed unit is plus/s	0	0
P16.73	EtherCAT slave address	0x0000-0xFFFF	0xFFFF	0
P16.74	EtherCAT-DC synchronization cycle selection	0-5 0: Reserved 1: Reserved 2: 1ms 3: 2ms 4: 4ms 5: 8ms	0	0
P16.75	EtherCAT communication timeout time	0.0–60.0s	5.0s	0

Function code	Name	Detailed parameter description	Default value	Modify
	EtherCAT			
P16.76	supported PLC	0-8: Reserved	0	0
	type			
P16.77		0–2		
	EtherCAT run	0: Free-run mode	0	
	mode	1: SM mode (synchronized in data input and		0
	mode	output)		
		2: DC mode (synchronized in distributed clocks)		

P17 group—Status viewing

Function code	Name	Detailed parameter description	Default value	Modify
P17.00	Set frequency	Display current set frequency of the VFD. Range: 0.00Hz–P00.03	0.00Hz	•
P17.01	Output frequency	Display current output frequency of the VFD. Range: 0.00Hz–P00.03	0.00Hz	•
P17.02	Ramp reference frequency	Display current ramp reference frequency of the VFD. Range: 0.00Hz–P00.03	0.00Hz	•
P17.03	Output voltage	Display current output voltage of the VFD. Range: 0–1200V	0V	•
P17.04	Output current	Display the valid value of current output current of the VFD. Range: 0.0–5000.0A	0.0A	•
P17.05	Motor speed	Display current motor speed. Range: 0–65535 rpm	0 rpm	•
P17.06	Torque current	Display current torque current of the VFD. Range: -3000.0–3000.0A	0.0A	•
P17.07	Exciting current	Display current exciting current of the VFD. Range: -3000.0–3000.0A	0.0A	•
P17.08	Motor power	Display current motor power; 100% relative to rated motor power, positive value is motoring state, negative value is generating state. Range: -300.0–300.0% (relative to rated motor power)	0.0%	•
P17.09	Motor output torque	Display current output torque of the VFD; 100% relative to rated motor torque, during forward running, positive value is motoring state, negative value is generating state, during reverse running,	0.0%	•

Function code	Name	Detailed parameter description	Default value	Modify
		positive value is generating state, negative value is		
		motoring state.		
		Range: -250.0–250.0%		
	Estimated motor	The estimated motor rotor frequency under open-		
P17.10	frequency	loop vector condition.	0.00Hz	•
	rrequericy	Range: 0.00–P00.03		
P17.11	DC bus voltage	Display current DC bus voltage of the VFD.	0V	
F 17.11	DC bus voltage	Range: 0.0–2000.0V		
		Display current digital input terminal state of the		
		VFD.		
		0x00-0x3F		
	Digital input	Bit0: S1		
P17.12	terminal state	Bit1: S2	0x00	•
		Bit2: S3		
		Bit3: S4		
		Bit4: HDIA		
		Bit5: HDIB		
	Digital output terminal state	Display current digital output terminal state of the		
		VFD.		
		0x00-0x0F		
P17.13		Bit0: Y1	0x00	•
		Bit1: HDO		
		Bit2: RO1		
		Bit3: RO2		
	Digital	Display the regulating variable by UP/DOWN		
P17.14	adjustment	terminals of the VFD.	0.00Hz	•
	variable	Range: 0.00Hz–P00.03		
		Relative to percentage of the rated torque of		
P17.15	Torque reference value	current motor, display torque reference.	0.0%	
F 17.13		Range: -300.0%–300.0% (of the motor rated		•
		current)		
P17.16	Linear speed	0–65535	0	•
P17.17	Reserved			
P17.18	Count value	0–65535	0	•
D17.40	Ald input valta	Display input signal of Al1	0.001/	
P17.19	Al1 input voltage	Range: 0.00–10.00V	0.00V	
P17.20	Al2 input voltage	Display input signal of Al2	0.00V	•
20	Aiz iriput voitage	Range: -10.00V–10.00V	0.00 V	

Function code	Name	Detailed parameter description	Default value	Modify
P17.21	HDIA input	Display input frequency of HDIA	0.000	
P17.21	frequency	Range: 0.000–50.000kHz	kHz	•
P17.22	HDIB input	Display input frequency of HDIB	0.000	
P17.22	frequency	Range: 0.000–50.000kHz	kHz	
P17.23	PID reference value	Display PID reference value Range: -100.0–100.0%	0.0%	•
P17.24	PID feedback value	Display PID feedback value Range: -100.0–100.0%	0.0%	•
P17.25	Motor power factor	Display the power factor of current motor. Range: -1.00–1.00	0.00	•
P17.26	Current running time	Display current running time of the VFD. Range: 0–65535min	0min	•
P17.27	Simple PLC and current stage number of multi- step speed	Display the present stage of the simple PLC function. Range: 0–15	0	•
P17.28	Motor ASR controller output	Display the speed loop ASR controller output value under vector control mode, relative to the percentage of rated torque of the motor. Range: -300.0%-300.0% (of the motor rated current)	0.0%	•
P17.29	Pole angle of open-loop synchronous motor	Display initial identification angle of synchronous motor Range: 0.0–360.0	0.0	•
P17.30	Phase compensation of synchronous motor	Display phase compensation of synchronous motor Range: -180.0–180.0	0.0	•
P17.31	High-frequency superposition current of synchronous motor	0.0%–200.0% (of the rated motor current)	0.0	•
P17.32	Motor flux linkage	0.0%–200.0%	0.0%	•
P17.33	Exciting current reference	Display the exciting current reference value under vector control mode Range: -3000.0–3000.0A	0.0A	•

Function code	Name	Detailed parameter description	Default value	Modify
P17.34	Torque current reference	Display torque current reference value under vector control mode Range: -3000.0–3000.0A	0.0A	•
P17.35	AC incoming current	Display the valid value of incoming current on AC side Range: 0.0–5000.0A	0.0A	•
P17.36	Output torque	Display output torque value, during forward running, positive value is motoring state, negative value is generating state; during reverse running, positive value is generating state, negative value is motoring state. Range: -3000.0Nm-3000.0Nm	0.0Nm	•
P17.37	Motor overload count value	0–65535	0	•
P17.38	Process PID output	-100.0%–100.0%	0.00%	•
P17.39	Parameter download wrong function code	0.00–99.00	0.00	•
P17.40	Motor control mode	Ones: Control mode 0: Vector 0 1: Vector 1 2: VF control 3: Closed-loop control Tens: Control state 0: Speed control 1: Torque control 2: Position control Hundreds: Motor number 0: Motor 1 1: Motor 2	0x2	•
P17.41	Upper limit of the torque when motoring	0.0%-300.0% (of the motor rated current)	0.0%	•
P17.42	Upper limit of braking torque	0.0%-300.0% (of the motor rated current)	0.0%	•
P17.43	Upper limit frequency of forward running	0.00Hz-P00.03	0.00Hz	•

Function code	Name	Detailed parameter description	Default value	Modify
	of torque control			
P17.44	Upper limit frequency of reverse running of torque control	0.00Hz-P00.03	0.00Hz	•
P17.45	Inertia compensation torque	-100.0%–100.0%	0.0%	•
P17.46	Friction compensation torque	-100.0%–100.0%	0.0%	•
P17.47	Motor pole pairs	0–65535	0	•
P17.48	VFD overload count value	0–65535	0	•
P17.49	Frequency set by A source	0.00-P00.03	0.00Hz	•
P17.50	Frequency set by B source	0.00-P00.03	0.00Hz	•
P17.51	PID proportional output	-100.0%–100.0%	0.0%	•
P17.52	PID integral output	-100.0%–100.0%	0.0%	•
P17.53	PID differential output	-100.0%–100.0%	0.0%	•
P17.54	Actual PID proportional gain	0.00–100.00	0.00	•
P17.55	Actual PID integral time	0.00–10.00s	0.00s	•
P17.56	Actual PID differential time	0.00–10.00s	0.00s	•
P17.57	Current step of multi-step speed running	0–15	0	•
P17.58	Peak-to-peak value at 100Hz frequency component (square-wave	0.0–300.0V Peak-to-peak value of bus voltage fluctuation at 100Hz frequency component, which is detected by using a square-wave orthogonal function	0.0V	•

Function code	Name	Detailed parameter description	Default value	Modify
	orthogonal			
	function			
	detected)			
	Peak-to-peak			
P17.59	value at 100Hz frequency component (sine- wave orthogonal function detected)	0.0–300.0V Peak-to-peak value of bus voltage fluctuation at 100Hz frequency component, which is detected by using a sine-wave orthogonal function	0.0V	•
P17.60	Reserved			
P17.61	Status machine value	0-10 0: Reserved 1: Initializing 2: Pre-operating 3: Reserved 4: Safe running 5-7: Reserved 8: Operating 9-10: Reserved	0	•
P17.62	EtherCAT control word	0–65535	0	•
P17.63		0–65535	0	/●
P17.64	VFD status word	0x0000–0xFFFF Bit0: Running with protection Bit1: Running Bit2: Running direction (1=REV, 0=FWD) Bit3: jogging Bit4: Pre-alarming Bit5:- In fault Bit6: Suspended Bit7: In sleep Bit8: PoFF Bit9: Undervoltage due to transient power loss Bit10: Underspeed due to overvoltage Bit11: Pre-exciting Bit12: DC braking Bit13: Identifying parameters	0x0000	

Function code	Name	Detailed parameter description	Default value	Modify
		Bit14: Flux weakening (reserved)		
		Bit15: Reserved		

P18 group—Closed-loop control state check

Function code	Name	Detailed parameter description	Default value	Modify
		The actual-measured encoder frequency; the value of forward running is positive; the value of		
P18.00	Actual frequency of encoder	reverse running is negative. Range: -999.9–3276.7Hz Note: P18.00 is displayed only in the V/F and	0.0Hz	•
		closed-loop modes, but not in the open-loop mode.		
P18.01	Encoder position count value	Encoder count value, quadruple frequency. Range: 0–65535	0	•
P18.02	Encoder Z pulse count value	Corresponding count value of encoder Z pulse. Range: 0–65535	0	•
P18.03	High bit of position reference value	High bit of position reference value, zero out after stop. Range: 0–30000	0	•
P18.04	Low bit of position reference value	Low bit of position reference value, zero out after stop. Range: 0–65535	0	•
P18.05	High bit of position feedback value	High bit of position feedback value, zero out after stop. Range: 0–30000	0	•
P18.06	Low bit of position feedback value	Low bit of position feedback value, zero out after	0	•
P18.07	Position deviation	Deviation between current reference position and actual running position. Range: -32768–32767	0	•
P18.08	Position of position reference point	Position of reference point of Z pulse when the spindle stops accurately. Range: 0–65535	0	•
P18.09	Current position setting of spindle	Current position setting when the spindle stops accurately. Range: 0–359.99°	0.00°	•
P18.10	Current position	Current position when spindle stops accurately.	0	•

Function code	Name	Detailed parameter description	Default value	Modify
	when spindle stops accurately	Range: 0–65535		
P18.11	Encoder Z pulse direction	Z pulse direction display. When the spindle stops accurately, there may be a couple of pulses' error between the position of forward and reverse orientation, which can be eliminated by adjusting Z pulse direction of P20.02 or exchanging phase AB of encoder. 0: Forward 1: Reverse	0	•
P18.12	Encoder Z pulse angle	Reserved. Range: 0.00–359.99°	0.00°	•
P18.13	Encoder Z pulse error times	Reserved. Range: 0–65535	0	•
P18.14	High bit of encoder pulse count value	0–65535	0	•
P18.15	Low bit of encoder pulse count value	0–65535	0	•
P18.16	Main control board measured speed value	-3276.8–3276.7Hz	0.0Hz	•
P18.17	Pulse command frequency	Pulse command (A2, B2 terminal) is converted to the set frequency, and it is valid under pulse position mode and pulse speed mode. Range: -3276.8–3276.7Hz	0.00Hz	•
P18.18	Pulse command feedforward	Pulse command (A2, B2 terminal) is converted to the set frequency, and it is valid under pulse position mode and pulse speed mode. Range: -3276.8–3276.7Hz	0.00Hz	•
P18.19	Position regulator output	The output frequency of the position regulator during position control. Range: -327.68–327.67Hz	0.00Hz	•
P18.20	Count value of resolver	Count value of resolver. Range: 0–65535	0	•
P18.21	Resolver angle	The pole position angle read according to the resolver-type encoder.	0.00°	•

Function code	Name	Detailed parameter description	Default value	Modify
		Range: 0.00–359.99°		
P18.22	Pole angle of closed-loop synchronous motor	Current pole position. Range: 0.00–359.99°	0.00°	•
P18.23	Status word 2	0x0000_0xFFFF	0x0000	•
P18.24	High bit of count value of PG card pulse reference	0–65535	0	•
P18.25	Low bit of count value of PG card pulse reference	0–65535	0	•
P18.26	PG card measured speed value	-3276.8–3276.7Hz	0.0Hz	•
P18.27	Encoder UVW sector	0–7	0	•
P18.28	Encoder PPR (pulse-per- revolution) display	0–65535	0	•
P18.29	Angle compensation value of synchronous motor	-180.0–180.0	0.00	•
P18.30	Z pulse angle of synchronous motor	0.00–655.35	0.00	•
P18.31	Pulse reference Z pulse value	0–65535	0	•
P18.32	Pulse-given main control board measured speed value	-3276.8–3276.7Hz	0.0Hz	•
P18.33	Pulse-given PG card measured speed value	-3276.8–3276.7Hz	0.0Hz	•

Function code	Name	Detailed parameter description	Default value	Modify
P18.34	Present encoder filter width	0–63	0	•
P18.35	8k test duration	0–65535	0	•

P19 group—Expansion card state check

Function code	Name	Detailed parameter description	Default value	Modify
D40.00	Type of card at	0–65535		
P19.00	slot 1	0: No card	U	
D40.04	Type of card at	1: Programmable card		
P19.01	slot 2	2: I/O card	U	•
		3: Incremental PG card		
		4: Incremental PG card with UVW		
		5: Ethernet communication card		
		6: DP communication card	Modi	
		7: Bluetooth card 1		
		8: Resolver PG card		
		9: CANopen communication card		
		10: WIFI card		
	Type of cord at	11: PROFINET communication card		
P19.02	Type of card at slot 3	12: Sine/Cosine PG card without CD signal	0	•
		13: Sine/Cosine PG card with CD signal		
		14: Absolute encoder PG card		
		15: CAN master/slave communication card		
		16: Modbus/Modbus TCP communication card		
		17: EtherCAT communication card		
		20: PT100/PT1000 temperature detection card		
		21: EtherNet IP communication card		
		23: Bluetooth card 2		
		24–65535: Reserved		
	Software version			
P19.03	of the expansion	0.00–655.35	0.00	•
	card in card slot 1			
	Software version			
P19.04	of the expansion	0.00–655.35	0.00	•
	card in card slot 2			

Function code	Name	Detailed parameter description	Default value	Modify
P19.05	Software version of the expansion card in card slot 3	0.00–655.35	0.00	•
P19.06	Input state of expansion I/O card terminals	0-0xFFFF	0	•
P19.07	Output state of expansion I/O card terminals	0-0xFFFF	0	•
P19.08	Reserved			
P19.09	Al3 input voltage of expansion I/O card	0.00–10.00V	0.00V	•
P19.10	EC PT100 detected temperature	-50.0–150.0°C	0.0°C	•
P19.11	EC PT100 detected digital	0–4096	0	•
P19.12	EC PT1000 detected temperature	-50.0–150.0°C	0.0°C	•
P19.13	EC PT1000 detected digital	0–4096	0	•
P19.14	Alarm display	0-4 0: No alarm 1: PT100 detected OH alarm 2: PT1000 detected OH alarm 3: PT100 disconnection alarm 4: PT1000 disconnection alarm	0	•
P19.15	VFD control word	0–65535	0	•
P19.16	VFD status word	0–65535	0	•
P19.17	Ethernet monitoring variable 1	0–65535	0	•
P19.18	Ethernet monitoring variable 2	0–65535	0	•
P19.19	Ethernet	0–65535	0	•

Function code	Name	Detailed parameter description	Default value	Modify
	monitoring			
	variable 3			
	Ethernet			
P19.20	monitoring	0–65535	0	•
	variable 4			
P19.21	AI/AO detected	-20.0–200.0°C	0.0°C	
F 19.21	temperature	-20.0-200.0 C	0.0 C	
	Variable address			
P19.22	of speed	0x0000_0xFFFF	0x0000	
1 19.22	reference	UXUUUU-UXFFFF	000000	
	calibration value			
	Variable address			
P19.23	of speed	0x0000_0xFFFF	0x0000	
	feedback	UXUUUU-UXFFFF	0.0000	
	calibration value			

P20 group—Encoder of motor 1

Function code	Name	Detailed parameter description	Default value	Modify
		0: Incremental encoder		
		1: Resolver-type encoder		
P20 00	Encoder type	2: Sin/Cos encoder	0	
1 20.00	display	3: Endat absolute encoder	U	
		4: SSI absolute encoder		
		5–6: Reserved		
	Encoder pulse	Number of pulses generated when the encoder		
P20.01	number	revolves for one circle.	1024	0
		Setting range: 0–16000		
		Ones: AB direction		
		0: Forward		
		1: Reverse		
		Tens: Z pulse direction (reserved)		
P20.02	Encoder direction	0: Forward	0x000	0
		1: Reverse		
		Hundreds: CD/UVW pole signal direction		
		0: Forward		
		1: Reverse		
P20.03	Detection time of	The detection time of encoder offline fault.	2.0s	0
1-20.03	encoder offline	Setting range: 0.0–10.0s	2.05	

Function code	Name	Detailed parameter description	Default value	Modify
	fault	Note:		
		When the value is 0.0s, the fault will not be		
		detected.		
	Detection time of	Detection time of encoder reversal fault.		
P20.04	encoder reversal	Setting range: 0.0–100.0s	0.8s	0
	fault	Jetting range. 0.0–100.05		
		Setting range: 0x00–0x99		
D20 05	Filter times of	Ones: Low-speed filter time, corresponds to 2^(0-		
P20.05	encoder	9)×125μs.	0x33	0
	detection	Tens: High-speed filter times, corresponds to 2^(0-		
		9)×125μs.		
	Speed ratio	You need to set this parameter when the encoder		
P20 06	between encoder	is not installed on the motor shaft and the drive	1.00	0
1 20.00	mounting shaft	ratio is not 1.	1.00	
	and motor	Setting range: 0.00–655.35		
		Bit0: Enable Z pulse calibration		
		Bit1: Enable encoder angle calibration		
		Bit2: Enable SVC speed measurement		
		Bit3: Reserved		
		Bit4: Reserved		
		Bit5: Reserved		
	Control	Bit6: Enable CD signal calibration		
P20 07	parameters of	Bit7: Reserved	0x0003	0
F20.07	synchronous	Bit8: Do not detect encoder fault during autotuning	0.00003	
	motor	Bit9: Enable Z pulse detection optimization		
		Bit10: Enable initial Z pulse calibration optimization		
		Bit11: Update the initial angle		
		Bit12: Clear Z pulse arrival signal after stop		
		Bit13: Reserved		
		Bit14: Detect Z pulse after one rotation		
		Bit15: Reserved		
		0x00–0x11		
		Ones: Z pulse		
	Enable Z pulse	0: Do not detect		
P20.08	offline detection	1: Enable	0x10	0
	omine detection	Tens: UVW pulse (for synchronous motor)		
		0: Do not detect		
		1: Enable		

Function code	Name	Detailed parameter description	Default value	Modify
P20.09	Initial angle of Z	Relative electric angle of encoder Z pulse and motor pole position.	0.00°	0
P20.10	Initial angle of the pole	Setting range: 0.00–359.99° Relative electric angle of encoder position and motor pole position. Setting range: 0.00–359.99°	0.00°	0
P20.11	Autotuning of initial angle of pole	0-3 0: No operation 1: Rotary autotuning (DC braking) 2: Static autotuning (suitable for resolver-type encoder, sin/cos with CD signal feedback) 3: Rotary autotuning (initial angle identification)	0	0
P20.12	Speed measurement optimization selection	0–2 0: No optimization 1: Optimization mode 1 2: Optimization mode 2	1	0
P20.13	CD signal zero offset gain	0–65535	0	0
P20.14	Encoder type selection	Ones: Incremental encoder 0: without UVW 1: with UVW Tens: Sin/Cos encoder 0: without CD signal 1: with CD signal	0x00	0
P20.15	Speed measurement mode	0: PG card 1: Local; realized by HDIA and HDIB; supports incremental 24V encoder only	0	0
P20.16	Frequency- division coefficient	0–255 When this parameter is set to 0 or 1, frequency division of 1:1 is implemented.	0	0
P20.17	Pulse filer processing	0x0000–0xFFFF Bit0: Enable/disable encoder input filter 0: No filter 1: Filter Bit1: Encoder signal filter mode (set Bit0 or Bit2 to 1) 0: Self-adaptive filter 1: Use P20.18 filter parameters Bit2: Enable/disable encoder frequency-division	0x0033	0

Function code	Name	Detailed parameter description	Default value	Modify
		output filter		
		0: No filter		
		1: Filter		
		Bit3: Enable/disable filter for frequency-division		
		output of pulse reference		
		0: No filter		
		1: Filter		
		Bit4: Enable/disable pulse reference filter		
		0: No filter		
		1: Filter		
		Bit5: Pulse reference filter mode (valid when Bit4 is		
		set to 1)		
		0: Self-adaptive filter		
		1: Use P20.19 filter parameters		
		Bit6: Frequency-divided output source setting		
		(valid only for incremental encoders)		
		0: Encoder signals		
		1: Pulse reference signals		
		Bits7–15: Reserved		
		0–63		
P20.18	Encoder pulse	The filtering time is P20.18×0.25 µs. The value 0	2	0
	filter width	or 1 indicates 0.25 µs.		
	5	0–63		
P20.19	Pulse reference	The filtering time is P20.19×0.25 µs. The value 0	2	0
	filter width	or 1 indicates 0.25 µs.		
P20.20	Pulse number of	0–16000	1024	0
	pulse reference			_
	Enable angle			
P20.21	compensation of	0–1	1	0
1 20.21	synchronous		•	
	motor			
	Switchover			
	frequency	0.00Hz-P00.03		
P20.22	threshold of	Note: This parameter is valid only when P20.12 is	1.00Hz	0
1 20.22	speed	set to 0.	1.00112	
	measurement	SEL 10 0.		
	mode			
D00 00	Synchronous	200 0 200 00/	100.00/	
P20.23	motor angle	-200.0–200.0%	100.0%	0

Function code	Name	Detailed parameter description	Default value	Modify
	compensation			
	coefficient			
	Number of pole			
P20.24	pairs in initial	1 100	2	0
P20.24	magnetic pole	1–128 	2	0
	angle autotuning			
		0–1		
P20.25	SSI encoder type	0: Single-turn	1	0
		1: Multi-turn		
	SSI encoder			
P20.26	single-turn	0–20	14	0
	resolution			
	SSI encoder			
P20.27	single-turn	0–20	12	0
	resolution (total)			

P21 group—Position control

Function code	Name	Detailed parameter description	Default value	Modify
P21.00	Name Positioning mode	Detailed parameter description 0x0000–0x7121 Ones: Control mode selection 0: Speed control 1: Position control Tens: Position command source 0: Pulse train 1: Digital position 2: Positioning of photoelectric switch during stop Hundreds: Position feedback source (reserved, fixed to channel P) 0: PG1 1: PG2 Thousands: Servo mode 0: Servo disabled, without position deviation 1: Servo disabled, without position deviation 2: Servo enabled, without position deviation	value 0x0000	Modify
		Servo enabled, with position deviation 4–7: Reserved		
P21.01	Pulse command mode	0x0000–0x3133 Ones: Pulse mode	0x0000	0

Function code	Name	Detailed parameter description	Default value	Modify
		0: A/B quadrature pulse; A precedes B		
		1: A: PULSE; B: SIGN		
		If channel B is of low electric level, the edge		
		counts up; if channel B is of high electric level, the		
		edge counts down.		
		2: A: Positive pulse		
		Channel A is positive pulse; channel B needs no		
		wiring.		
		3: A/B dual-channel pulse; channel A pulse edge		
		counts up, channel B pulse edge counts down		
		Tens: Pulse direction selection		
		0: Forward		
		1: Reverse		
		2: Specified by the running direction		
		3: Reserved		
		Hundreds: Frequency-multiplication selection for		
		pulse + direction (reserved)		
		0: No frequency-multiplication		
		1: Frequency-multiplication		
		Thousands: Pulse control selection		
		0: Pulse inertia filter, without overspeed control		
		1: Average moving filter, without overspeed control		
		2: Pulse inertia filter, with overspeed control		
		3: Average moving filter, with overspeed control		
P21.02	APR gain 1	The two automatic position regulator (APR) gains	20.0	0
		are switched based on the switching mode set in		
		P21.04. When the spindle orientation function is		
		used, the gains are switched automatically,		
P21.03	APR gain 2	regardless of the setting of P21.04. P21.03 is used	30.0	0
		for dynamic running, and P21.02 is used for		
		maintaining the locked state.		
		Setting range: 0.0–400.0		
		Used to set the APR gain switching mode. To use		
		torque command-based switching, you need to set		
	Switching mode	P21.05; and to use speed command-based		
P21.04	of position loop	switching, you need to set P21.06.	0	0
	gain	0: No switching		
		1: Torque command		
		2: Speed command		

Function code	Name	Detailed parameter description	Default value	Modify
		3–5: Reserved		
P21.05	Torque command level during position gain switchover	0.0–100.0% (rated motor torque)	10.0%	0
P21.06	Speed command level during position gain switchover	0.0–100.0% (rated motor speed)	10.0%	0
P21.07	Smooth filter coefficient during gain switchover	The smooth filter coefficient during position gain switchover. Setting range: 0–15	5	0
P21.08	Output limit of position controller	The output limit of position regulator, if the limit value is 0, position regulator will be invalid, and no position control can be performed, however, speed control is available. Setting range: 0.0–100.0% (Max. output frequency P00.03)	20.0%	0
P21.09	Completion range of positioning	When the position deviation is less than P21.09, and the duration is larger than P21.10, positioning completion signal will be outputted. Setting range: 0–1000	10	0
P21.10	Detection time for positioning completion	0.0–1000.0ms	10.0ms	0
P21.11	Numerator of position command ratio	Electronic gear ratio, used to adjust the corresponding relation between position command and actual running displacement. Setting range: 1–65535	1000	0
P21.12	Denominator of position command ratio	Setting range: 1–65535	1000	0
P21.13	Position feedforward gain	0.00–120.00% For Pulse train reference only (position control)	100.00	0
P21.14	Position feedforward filter time constant	0.0–3200.0ms For Pulse train reference only (position control)	3.0ms	0
P21.15	Position	The position feedforward filter time constant during	0.0ms	0

Function code	Name	Detailed parameter description	Default value	Modify
	command filter	Pulse train positioning.		
	time constant	0.0–3200.0ms		
		0x0000-0xFFFF		
		Bit0: Positioning mode selection		
		0: Relative position		
		1: Absolute position (home) (reserved)		
		Bit1: Positioning cycle selection		
		0: Cyclic positioning by terminals		
		1: Automatic cyclic positioning		
		Bit2: Cycle mode		
		0: Continuous		
		1: Repetitive (supported by automatic cyclic		
		positioning only)		
		Bit3: P21.17 digital setting mode		
		0: Incremental		
		1: Position type (do not support continuous mode)		
		Bit4: Home searching mode		
		0: Search for the home just once		
		1: Search for the home during each run		
	Digital positioning	Bit5: Home calibration mode		
P21.16	Digital positioning mode	0: Calibrate in real time	0x0000	0
	mode	1: Single calibration		
		Bit6: Positioning completion signal selection		
		0: Valid during the time set by P21.25 (Hold time of		
		positioning completion signal)		
		1: Always valid		
		Bit7: Initial positioning selection (for cyclic		
		positioning by terminals)		
		0: Invalid (do not rotate)		
		1: Valid		
		Bit8: Positioning enable signal selection (for cyclic		
		positioning by terminals only; positioning function		
		is always enabled for automatic cyclic positioning)		
		0: Pulse signal		
		1: Level signal		
		Bit9: Position source		
		0: P21.17 setting		
		1: CANopen/PROFINET/EtherNet IP/EtherCAT		
		communication setting		

Function code	Name	Detailed parameter description	Default value	Modify
		Bit10: Whether to save the encoder pulse counting		
		value at power failure		
		0: Do not save		
		1: Save		
		Bit 11: Reserved		
		Bit12: Positioning curve selection (reserved)		
		0: Straight line		
		1: S curve		
		Set digital positioning position;		
P21.17	Position digital	Actual position=P21.17×P21.11/P21.12	0	0
	reference	0–65535		
		0: Set by P21.19		
		1: Set by Al1		
		2: Set by Al2		
P21.18	P21.18 Positioning speed setting selection	3: Set by Al3	0	0
		4: Set by high-speed pulse HDIA		
		5: Set by high-speed pulse HDIB		
		6: Set by EtherCAT communication		
P21.19	Positioning speed digits	0-100.0% of the max. frequency	20.0%	0
D04.00	Acceleration time	Set the acceleration/deceleration time of	0.00-	
P21.20	of positioning	positioning process.	3.00s	0
		Acceleration time of positioning means the time		
		needed for the VFD to accelerate from 0Hz to		
		Max. output frequency (P00.03).		
D04.04	Deceleration time	Deceleration time of positioning means the time	0.00	
P21.21	of positioning	needed for the VFD to decelerate from Max. output	3.00s	0
		frequency (P00.03) to 0hz.		
		Setting range of P21.20: 0.01–300.00s		
		Setting range of P21.21: 0.01–300.00s		
	l lald times of	Set the hold time of waiting when target positioning		
P21.22	Hold time of	position is reached.	0.100s	0
	positioning arrival	Setting range: 0.000–60.000s		
P21.23	Home search speed	0.00–50.00Hz	2.00Hz	0
P21.24	Home position offset	0–65535	0	0
P21.25	Hold time of	The hold time of positioning completion signal, this	0.200s	0
	positioning	parameter is also valid for positioning completion		

Function code	Name	Detailed parameter description	Default value	Modify
	completion signal	signal of spindle orientation.		
		Setting range: 0.000–60.000s		
	Pulse	P21.26: 0-65535		
P21.26	superposition	P21.27: 0.0–6553.5 pulses/ms	0	0
	value	This function is enabled in the pulse speed		
	Pulse	reference (P00.06=12) or pulse position mode	0 0	
P21.27	superposition	(P21.00=1):		0
	rate	1. Input terminal function #68 (enable pulse	puises/IIIs	
		superposition)		
		When the rising edge of the terminal is detected,		
		the pulse setting is increased to the value of		
		P21.26, and the pulse reference channel is		
		compensated by the pulse superposition rate set in		
		P21.27.	o 8.0 pulses/ms d, et in 5.0s ual	
		2. Input terminal function #67 (progressive		
		increase of pulses)		
		When this terminal is enabled, the pulse reference		
		channel is compensated by the pulse		
		superposition rate set in P21.27.		
		Note: Terminal filtering set in P05.09 may slightly		
		affect the actual superposition.		
	Acceleration/	Example:		
	deceleration time	P21.27 = 1.0 pulses/ms		
P21.28	after disabling	P05.05 = 67	5.0s	0
	pulse	If the input signal of terminal S5 is 0.5s, the actual		
	·	number of superposed pulses is 500.		
		3. Input terminal function #69 (progressive		
		decrease of pulses)		
		The sequence of this function is the same as those		
		described above. The difference lies in that this		
		terminal indicates that negative pulses are		
		superposed.		
		Note: All the pulses described here are		
		superposed on the pulse reference channel (A2, B2). Pulse filtering, electronic gear, and other		
		functions are valid for superposed pulses.		
		Output terminal function #28 (pulse		
		superposing)		
		When pulses are superposed, the output terminal		
		which pulses are superposed, the output terminal		l

Function code	Name	Detailed parameter description	Default value	Modify
		operates. After pulses are superposed, the		
P21.29	Speed feedforward filter time constant (Pulse train speed mode)	It is the filter time constant detected by Pulse train when the speed reference source is set to Pulse train (P0.06=12 or P0.07=12). Setting range: 0–3200.0ms	10.0ms	0
P21.30	Numerator of the 2nd command ratio	1–65535	1000	0
P21.31	Pulse reference speed measuring method	0–2 0: Main control board 1: PG card 2: Hybrid	0	0
P21.32	Pulse reference feedforward source	0x0–0x1	0x0	0
P21.33	Set value of clearing encoder count	0–65535	0	0

P22 group—Spindle positioning

Function code	Name	Detailed parameter description	Default value	Modify
P22.00	Spindle positioning mode selection	Bit0: Enable spindle positioning 0: Disable 1: Enable Bit1: Select spindle positioning reference point 0: Z pulse input 1: S2/S3/S4 terminal input Bit2: Search for reference point 0: Search the reference point only once 1: Search the reference point every time Bit3: Enable reference point calibration 0: Disable 1: Enable Bit4: Positioning mode selection 1 0: Set direction positioning 1: Near-by direction positioning	0x0000	0

Function code	Name	Detailed parameter description	Default value	Modify
		Bit5: Positioning mode selection 2		
		0: Forward positioning		
		1: Reverse positioning		
		Bit6: Zeroing command selection		
		0: Electric level mode		
		1: Pulse mode		
		Bit7: Reference point calibration mode		
		0: Calibrate at the first time		
		1: Calibrate in real time		
		Bit8: Action selection after zeroing signal		
		cancellation (electric level type)		
		0: Switch to speed mode		
		1: Position lock mode		
		Bit9: Positioning completion signal selection		
		0: Electric level signal		
		1: Pulse signal		
		Bit10: Z pulse signal source		
		0: Motor		
		1: Spindle		
		Bit11–15: Reserved		
		During spindle orientation, the speed of the		
		position point of orientation will be searched, and		
P22.01	Speed of spindle	then it will switch over to position control	10.00Hz	0
	orientation	orientation.		
		Setting range: 0.00–100.00Hz		
		Deceleration time of spindle orientation.		
	Deceleration time	Spindle orientation deceleration time means the		
P22.02	of spindle	time needed for the VFD to decelerate from Max.	3.0s	0
	orientation	output frequency (P00.03) to 0Hz.		
		Setting range: 0.0–100.0s		
		You can select the zeroing positions of four		
P22.03	Spindle zeroing	spindles by terminals (functions 46 and 47).	0	0
. 22.00	position 0	Setting range: 0–65535	ŭ	
P22.04	Spindle zeroing position 1	Setting range: 0–65535	0	0
P22.05	Spindle zeroing position 2	Setting range: 0-65535	0	0
P22.06	Spindle zeroing position 3	Setting range: 0–65535	0	0

Function code	Name	Detailed parameter description	Default value	Modify
P22.07	Spindle scale- division angle 1	You can select seven spindle scale-division values by terminals (functions 48, 49 and 50). Setting range: 0.00–359.99°	15.00°	0
P22.08	Spindle scale- division angle 2	Setting range: 0.00–359.99°	30.00°	0
P22.09	Spindle scale- division angle 3	Setting range: 0.00–359.99°	45.00°	0
P22.10	Spindle scale- division angle 4	Setting range: 0.00–359.99°	60.00°	0
P22.11	Spindle scale- division angle 5	Setting range: 0.00–359.99°	90.00°	0
P22.12	Spindle scale- division angle 6	Setting range: 0.00–359.99°	120.00°	0
P22.13	Spindle scale- division angle 7	Setting range: 0.00–359.99°	180.00°	0
P22.14	Spindle drive ratio	This function code sets the reduction ratio of the spindle and the mounting shaft of the encoder. Setting range: 0.001–30.000	1.000	0
P22.15	Zero-point communication setting of spindle	P22.15 sets spindle zero-point offset, if the selected spindle zero point is P22.03, the final spindle zero point will be the sum of P22.03 and P22.15. Setting range: 0–39999	0	0
P22.16– P22.17	Reserved			
P22.18	Rigid tapping selection	Ones: Enable/disable 0: Disable 1: Enable Tens: Analog input port selection 0: Invalid 1: Al1 2: Al2 3: Al3	0x00	0
P22.19	Analog filter time of rigid tapping	0.0ms–1000.0ms	1.0ms	0
P22.20	Max. frequency of rigid tapping	0.00–599.00Hz	50.00Hz	0
P22.21	Corresponding	0.00–10.00Hz	0.00Hz	0

Function code	Name	Detailed parameter description	Default value	Modify
	frequency of			
	analog zero drift			
	of rigid tapping			
P22.22-	Deceminad			
P22.24	Reserved			

P23 group—Vector control of motor 2

Function code	Name	Detailed parameter description	Default value	Modify
P23.00	Speed loop proportional gain 1	P23.00–P23.05 fit for vector control mode only. Below switchover frequency 1 (P23.02), the speed loop PI parameters are P23.00 and P23.01. Above	20.0	0
P23.01	Speed loop integral time 1	switchover frequency 2 (P23.05), the speed loop PI parameters are P23.03 and P23.04; in between	0.200s	0
P23.02	Switch over low point frequency	them, the PI parameters are obtained by linear variation between two groups of parameters, as	5.00Hz	0
P23.03	Speed loop proportional gain 2	shown in the figure below. PI parameters (P23.00.P23.01)	20.0	0
P23.04	Speed loop integral time 2	(P23.03.P23.04)	0.200s	0
P23.05	Switch over high point frequency	The speed loop dynamic response characteristics of vector control can be adjusted by setting the proportional coefficient and integral time of speed regulator. Increase proportional gain or decrease integral time can accelerate dynamic response of speed loop, however, if the proportional gain is too large or integral time is too small, system oscillation and large overshoot may occur; if proportional gain is too small, stable oscillation or speed offset may occur. Speed loop PI parameter is closely related to the system inertia, you should make adjustment according to different load characteristics based on the default PI parameter to fulfill different needs. Setting range of P23.00: 0.0–200.0 Setting range of P23.01: 0.000–10.000s	10.00Hz	0

Function code	Name	Detailed parameter description	Default value	Modify
		Setting range of P23.02: 0.00Hz–P23.05		
		Setting range of P23.03: 0.0–200.0		
		Setting range of P23.04: 0.000–10.000s		
		Setting range of P23.05: P23.02–P00.03 (Max.		
		output frequency)		
P23.06	Speed loop output filter	0-8 (corresponds to 0-2^8/10ms)	0	0
	Slip			
	compensation			
P23.07	coefficient of	Slip compensation coefficient is used to adjust the	100%	0
	vector control	slip frequency of vector control to improve system		
	(motoring)	speed control precision. You can effectively control		
	Slip	the static error of speed by adjusting this		
	compensation	parameter properly.		
P23.08	coefficient of	Setting range: 50–200%	100%	0
	vector control			
	(generating)			
	Current loop	Note:		
P23.09	proportional	These two parameters are used to adjust PI	1000	0
	coefficient P	parameters of current loop; it affects dynamic		
		response speed and control precision of the		
		system directly. The default value needs no		
D00.40	Current loop	adjustment under common conditions;	4000	
P23.10	integral	2. Applicable to SVC mode 0 (P00.00=0), SVC	1000	0
	coefficient I	mode 1 (P00.00=1), and FVC (P00.00=3)		
		Setting range: 0-65535		
P23.11	Speed loop differential gain	0.00-10.00s	0.00s	0
	Proportional	In the FVC (P00.00=3), when the frequency is		
D00.40	coefficient of	lower than the current-loop high-frequency	1000	
P23.12	high-frequency	switching threshold (P23.14), the current-loop PI	1000	0
	current loop	parameters are P23.09 and P23.10; and when the		
	Integral	frequency is higher than the current-loop high-		
D00.40	coefficient of	frequency switching threshold, the current-loop PI	1000	
P23.13	high-frequency	parameters are P23.12 and P23.13.	1000	0
	current loop	Setting range of P23.12: 0-65535		
	High-frequency	Setting range of P23.13: 0–65535		
P23.14	switchover	Setting range of P23.14: 0.0–100.0% (relative to	100.0%	0
	threshold of	max. frequency)		

Function code	Name	Detailed parameter description	Default value	Modify
	current loop			
P23.15- P23.19	Reserved			

P24 group—Encoder of motor 2

Function code	Name	Detailed parameter description	Default value	Modify
P24.00	Encoder type display	0: Incremental encoder 1: Resolver-type encoder 2: Sin/Cos encoder 3: Endat absolute encoder 4: SSI absolute encoder 5–6: Reserved	0	•
P24.01	Encoder pulse number	Number of pulses generated when the encoder revolves for one circle. Setting range: 0–16000	1024	0
P24.02	Encoder direction	Ones: AB direction 0: Forward 1: Reverse Tens: Z pulse direction (reserved) 0: Forward 1: Reverse Hundreds: CD/UVW pole signal direction 0: Forward 1: Reverse	0x000	©
P24.03	Detection time of encoder offline fault	The detection time of encoder offline fault. Setting range: 0.0–10.0s	2.0s	0
P24.04	Detection time of encoder reversal fault	Detection time of encoder reversal fault. Setting range: 0.0–100.0s	0.8s	0
P24.05	Filter times of encoder detection	Setting range: 0x00–0x99 Ones: Low-speed filter times, corresponds to 2^(0–9)×125µs. Tens: High-speed filter times; corresponds to 2^(0–9)×125µs.	0x33	0
P24.06	Speed ratio between encoder mounting shaft	You need to set this parameter when the encoder is not installed on the motor shaft and the drive ratio is not 1.	1.00	0

Function code	Name	Detailed parameter description	Default value	Modify
	and motor	Setting range: 0.00–655.35		
P24.07	Control parameters of synchronous motor	0x0000–0xFFFF Bit0: Enable Z pulse calibration Bit1: Enable encoder angle calibration Bit2: Enable SVC speed measurement Bit3: Reserved Bit4: Reserved Bit5: Reserved Bit6: Enable CD signal calibration Bit7: Reserved Bit8: Do not detect encoder fault during autotuning Bit9: Enable Z pulse detection optimization Bit10: Enable initial Z pulse calibration optimization Bit11: Update the initial angle Bit12: Clear Z pulse arrival signal after stop Bit13: Reserved Bit14: Detect Z pulse after one rotation	0x0003	0
P24.08	Enable Z pulse offline detection	Bit15: Reserved 0x00-0x11 Ones: Z pulse Reserved Tens: UVW pulse 0: Do not detect 1: Enable	0x10	0
P24.09	Initial angle of Z pulse	Relative electric angle of encoder Z pulse and motor pole position. Setting range: 0.00–359.99°	0.00°	0
P24.10	Initial angle of the pole	Relative electric angle of encoder position and motor pole position. Setting range: 0.00–359.99°	0.00°	0
P24.11	Autotuning of initial angle of pole	0-3 0: No operation 1: Rotary autotuning (DC braking) 2: Static autotuning (suitable for resolver-type encoder, sin/cos with CD signal feedback) 3: Rotary autotuning (initial angle identification)	0	0
P24.12	Speed measurement	0: No optimization 1: Optimization mode 1	1	0

Function code	Name	Detailed parameter description	Default value	Modify
	optimization selection	2: Optimization mode 2		
P24.13	CD signal zero offset gain	0–65535	0	0
P24.14	Encoder type selection	Ones: Incremental encoder 0: without UVW 1: with UVW Tens: Sin/Cos encoder 0: without CD signal 1: with CD signal	0x00	0
P24.15	Speed measurement mode	0: PG card 1: local; realized by HDIA and HDIB; supports incremental 24V encoder only	0	0
P24.16	Frequency- division coefficient	0–255 When this parameter is set to 0 or 1, frequency division of 1:1 is implemented.	0	0
P24.17	Pulse filer processing	0x0000–0xFFFF Bit0: Enable/disable encoder input filter 0: No filter 1: Filter Bit1: Encoder signal filter mode 0: Self-adaptive filter 1: Use P24.18 filter parameters Bit2: Enable/disable encoder frequency-division output filter 0: No filter 1: Filter Bit3: Enable/disable pulse reference frequency-division output filter 0: No filter 1: Filter Bit4: Enable/disable pulse reference filter 0: No filter 1: Filter Bit5: Pulse reference filter mode 0: Self-adaptive filter 1: Use P24.19 filter parameters Bit6: Frequency- division output source setting (valid only for incremental encoders)	0x0033	0

Function code	Name	Detailed parameter description	Default value	Modify
		0: Encoder signals		
		1: Pulse reference signals		
		Bits 7–15: Reserved		
P24.18	Encoder pulse filter width	0–63 The filtering time is P24.18×0.25 μs. The value 0 or 1 indicates 0.25 μs.	2	0
P24.19	Pulse reference filter width	$0-63$ The filtering time is P24.19×0.25 μ s. The value 0 or 1 indicates 0.25 μ s.	2	0
P24.20	Pulse number of pulse reference	0–16000	1024	0
P24.21	Enable angle compensation of synchronous motor	0–1	1	0
P24.22	Switchover frequency threshold of speed measurement mode	0.00Hz-P00.03	1.00Hz	0
P24.23	Synchronous motor angle compensation coefficient	-200.0-+200.0%	100.0%	0
P24.24	Number of pole pairs in initial magnetic pole angle autotuning	1–128	2	0
P24.25	SSI encoder type	0–1 0: Single-turn 1: Multi-turn	1	0
P24.26	SSI encoder single-turn resolution	0–20	14	0
P24.27	SSI encoder single-turn resolution (total)	0–20	12	0

P25 group—Extension I/O card input functions

Function code	Name	Detailed parameter description	Default value	Modify
P25.00	HDI3 input type selection	0: HDI3 is high-speed pulse input 1: HDI3 is digital input	0	0
P25.01	S5 terminal function	- J	0	0
P25.02	S6 terminal function		0	0
P25.03	S7 terminal function		0	0
P25.04	S8 terminal function	e same as P05.01	0	0
P25.05	S9 terminal function		0	0
P25.06	S10 terminal function		0	0
P25.07	HDI3 terminal function		0	0
P25.08	Input terminal polarity of expansion card	0x00–0x7F (0: disable, 1: enable) BIT0: S5 virtual terminal BIT1: S6 virtual terminal BIT2: S7 virtual terminal BIT3: S8 virtual terminal BIT4: S9 virtual terminal BIT5: S10 virtual terminal BIT6: HDI3 virtual terminal	0x00	0
P25.09	Virtual terminal setting of expansion card	0x000–0x7F (0: disable, 1: enable) BIT0: S5 virtual terminal BIT1: S6 virtual terminal BIT2: S7 virtual terminal BIT3: S8 virtual terminal BIT4: S9 virtual terminal BIT5: S10 virtual terminal BIT6: HDI3 virtual terminal	0x00	0
P25.10	HDI3 terminal switch-on delay	These function codes define corresponding delay	0.000s	0
P25.11	HDI3 terminal switch-off delay	of the programmable input terminals during level variation from switch-on to switch-off .	0.000s	0
P25.12	S5 terminal		0.000s	0

Function code	Name	Detailed parameter description	Default value	Modify
	switch-on delay	Si electrical level		
P25.13	S5 switch-off delay	Si valid /// valid invalid Switch-off	0.000s	0
P25.14	S6 terminal switch-on delay	delay delay Setting range: 0.000–50.000s	0.000s	0
P25.15	S6 switch-off delay	3	0.000s	0
P25.16	S7 terminal switch-on delay		0.000s	0
P25.17	S7 switch-off delay		0.000s	0
P25.18	S8 terminal switch-on delay		0.000s	0
P25.19	S8 switch-off delay		0.000s	0
P25.20	S9 terminal switch-on delay		0.000s	0
P25.21	S9 switch-off delay		0.000s	0
P25.22	S10 terminal switch-on delay		0.000s	0
P25.23	S10 switch-off delay		0.000s	0
P25.24	Lower limit value of Al3		0.00V	0
P25.25	Corresponding setting of lower limit of Al3	These function codes define the relation between analog input voltage and corresponding set value of analog input. When the analog input voltage	0.0%	0
P25.26	Upper limit value of Al3	exceeds the range of max./min. input, the max. input or min. input will be adopted during	10.00V	0
P25.27	Corresponding setting of upper limit of Al3	calculation. When analog input is current input, 0–20mA current corresponds to 0–10V voltage.	100.0%	0
P25.28	Input filter time of Al3	In different application cases, 100% of the analog setting corresponds to different nominal values.	0.030s	0
P25.29	Lower limit value of Al4	The figure below illustrates several settings.	0.00V	0
P25.30	Corresponding		0.0%	0

Function code	Name	Detailed parameter description	Default value	Modify
	setting of lower limit of Al4	Corresponding setting		
P25.31	Upper limit value of Al4	0 / AI	10.00V	0
P25.32	Corresponding setting of upper limit of Al4	10V 20mA /AI3/AI4 -100%	100.0%	0
P25.33	Input filter time of AI4	Input filter time: Adjust the sensitivity of analog input, increase this value properly can enhance the anti-interference capacity of analog variables; however, it will also degrade the sensitivity of analog input. Note: Al3 and Al4 can support 0–10V/0–20mA input, when Al3 and Al4 select 0–20mA input, the corresponding voltage of 20mA is 10V. Setting range of P25.24: 0.00V–P25.26 Setting range of P25.25: -300.0%–300.0% Setting range of P25.26: P25.24–10.00V Setting range of P25.27: -300.0%–300.0% Setting range of P25.28: 0.000s–10.000s Setting range of P25.30: -300.0%–300.0% Setting range of P25.31: P25.29–10.00V Setting range of P25.32: -300.0%–300.0% Setting range of P25.33: -300.0%–300.0% Setting range of P25.33: -300.0%–300.0%	0.030s	0
P25.34	HDI3 high-speed pulse input function	0: Set input via frequency 1: Count	0	0
P25.35	Lower limit frequency of HDI3	0.000 kHz – P25.37	0.000 kHz	0
P25.36	Corresponding setting of lower limit frequency of HDI3	-300.0%–300.0%	0.0%	0
P25.37	Upper limit frequency of HDI3	P25.35–50.000kHz	50.000 kHz	0

Function code	Name	Detailed parameter description	Default value	Modify
P25.38	Corresponding setting of upper limit frequency of HDI3	-300.0%–300.0%	100.0%	0
P25.39	HDI3 frequency input filter time	0.000s-10.000s	0.030s	0
P25.40	Al3 input signal type	Range: 0–1 0: Voltage type 1: Current type	0	0
P25.41	Al4 input signal type	Range: 0–1 0: Voltage type 1: Current type	0	0
P25.42- P25.45	Reserved			

P26 group—Output functions of expansion I/O card

Function code	Name	Detailed parameter description	Default value	Modify
P26.00	HDO2 output	0: Open collector high-speed pulse output	0	0
1 20.00	type	1: Open collector output	Ŭ	
P26.01	HDO2 output		0	0
F20.01	selection		U	O
P26.02	Y2 output		0	0
F20.02	selection		U	O
P26.03	Y3 output		0	0
P20.03	selection		U	
P26.04	Relay RO3		0	0
P20.04	output selection		U	
P26.05	Relay RO4	The same with P06.01	0	0
F20.03	output selection	The same with Foo.01	U	O
P26.06	Relay RO5		0	0
F20.00	output selection		U	O
P26.07	Relay RO6		0	0
F20.07	output selection		U	O
P26.08	Relay RO7		0	0
720.08	output selection		U	U
P26.09	Relay RO8		0	0
P20.09	output selection		U	

Function code	Name	Detailed parameter description	Default value	Modify
P26.10	Relay RO9 output selection		0	0
P26.11	Relay RO10 output selection		0	0
P26.12	Output terminal polarity of expansion card	0x0000-0x1FFF Bit0: Y2 Bit1: Y3 Bit2: HDO2 Bit3: RO3 Bit4: RO4 Bit5: RO5 Bit6: RO6 Bit7: RO7 Bit8: RO8 Bit9: RO9 Bit10: RO10 Bit11: RO11 Bit12: RO12	0x0000	0
P26.13	HDO2 switch-on delay		0.000s	0
P26.14	HDO2 switch-off delay		0.000s	0
P26.15	Y2 switch-on delay		0.000s	0
P26.16	Y2 switch-off delay	Used to define the corresponding delay of the level variation from switch-on to switch-off.	0.000s	0
P26.17	Y3 switch-on delay	Y electric level invalid Y valid Invalid /// Valid////////////////////////////////////	0.000s	0
P26.18	Y3 switch-off delay	← Switch on →ı + Switch off → delay delay	0.000s	0
P26.19	Relay RO3 switch-on delay	Setting range: 0.000–50.000s Note: P26.13 and P26.14 are valid only when P26.00 is set to 1.	0.000s	0
P26.20	Relay RO3 switch-off delay	1 20.00 10 301 10 1.	0.000s	0
P26.21	Relay RO4 switch-on delay		0.000s	0
P26.22	Relay RO4 switch-off delay		0.000s	0

code	ne	Detailed parameter description	Default value	Modify
P26.23 Relay	RO5		0.000s	0
switch-o	n delay		0.0005	O
P26.24 Relay	RO5		0.000s	0
switch-o	ff delay		0.0005	O
P26.25 Relay	RO6		0.000s	0
switch-o	n delay		0.0003	O
P26.26 Relay	RO6		0.000s	0
switch-o	ff delay		0.0003	0
P26.27 Relay	RO7		0.000s	0
switch-o	n delay		0.0003	O
P26.28 Relay	RO7		0.000s	0
switch-o	ff delay		0.0005	O
P26.29 Relay	RO8		0.000s	0
switch-o	n delay		0.0003	O
P26.30 Relay	RO8		0.000s	0
switch-o	ff delay		0.0005	0
P26.31 Relay	RO9		0.000s	0
switch-o	n delay		0.0005	0
P26.32 Relay	RO9		0.000s	0
switch-o	ff delay		0.0005	0
P26.33 Relay	RO10		0.000s	0
switch-o	n delay		0.0003	O
P26.34 Relay	RO10		0.000s	0
switch-o	ff delay		0.0003	O
P26.35 AO2 o	utput		0	0
selec	tion	Same as P06.14	0	0
P26.36 AO3 o	utput	Same as 1 00.14	0	0
selec	tion		0	0
P26.37 Rese	rved			
Lower	imit of	Above function codes define the relation between	0.607	
P26.38 AO2 o	utput	output value and analog output. When the output	0.0%	0
Corresp	onding	value exceeds the set max./min. output range, the		
P26.39 AO2 ou	tput of	upper/low limit of output will be adopted during	0.00V	0
lower	limit	calculation.		
Upper I	imit of	When analog output is current output, 1mA	400.007	
P26.40 AO2 o	utput	corresponds to 0.5V voltage. In different	100.0%	0
Corresp	onding	applications, 100% of output value corresponds to	40.0017	
P26.41 AO2 ou	tput of	different analog outputs.	10.00V	0

Function code	Name	Detailed parameter description	Default value	Modify
	upper limit	AO 10V (20mA)		
P26.42	AO2 output filter time		0.000s	0
P26.43	Lower limit of AO3 output		0.0%	0
P26.44	Corresponding AO3 output of lower limit	0.0% 100.0% > Setting range of P26.38: -300.0%—P26.40 Setting range of P26.39: 0.00V—10.00V	0.00V	0
P26.45	Upper limit of AO3 output	Setting range of P26.40: P26.38–100.0% Setting range of P26.41: 0.00V–10.00V	100.0%	0
P26.46	Corresponding AO3 output of upper limit	Setting range of P26.42: 0.000s–10.000s Setting range of P26.43: -300.0%–P26.45 Setting range of P26.44: 0.00V–10.00V	10.00V	0
P26.47	AO3 output filter time	Setting range of P26.45: P26.43–300.0% Setting range of P26.46: 0.00V–10.00V Setting range of P26.47: 0.000s–10.000s	0.000s	0
P26.48- P26.52	Reserved			

P27 group—Programmable expansion card functions

Function code	Name	Detailed parameter description	Default value	Modify
P27.00	Enabling programmable card	0–1 This function is reserved.	0	0
P27.01	C_WrP1	0–65535 Used to write a value to WrP1 of the programmable card.	0	0
P27.02	C_WrP2	0–65535 Used to write a value to WrP2 of the programmable card.	0	0
P27.03	C_WrP3	0–65535 Used to write a value to WrP3 of the programmable card.	0	0
P27.04	C_WrP4	0–65535 Used to write a value to WrP4 of the programmable card.	0	0
P27.05	C_WrP5	0–65535 Used to write a value to WrP5 of the	0	0

Function code	Name	Detailed parameter description	Default value	Modify
		programmable card.		
		0–65535		
P27.06	C_WrP6	Used to write a value to WrP6 of the	0	0
		programmable card.		
		0–65535		
P27.07	C_WrP7	Used to write a value to WrP7 of the	0	0
		programmable card.		
		0–65535		
P27.08	C_WrP8	Used to write a value to WrP8 of the	0	0
		programmable card.		
		0–65535		
P27.09	C_WrP9	Used to write a value to WrP9 of the	0	0
		programmable card.		
		0–65535		0
P27.10	C_WrP10	Used to write a value to WrP10 of the	0	
		programmable card.		
	Programmable card status	0–1		
		Used to display the status of the programmable		
P27.11		card.	0	•
		0: Stopped		
		1: Running		
		0–65535		
P27.12	C_MoP1	Used to monitor/view the MoP1 value of the	0	•
		programmable card.		
		0–65535		
P27.13	C_MoP2	Used to monitor/view the MoP2 value of the	0	•
		programmable card.		
		0–65535		
P27.14	C_MoP3	Used to monitor/view the MoP3 value of the	0	•
		programmable card.		
		0–65535		
P27.15	C_MoP4	Used to monitor/view the MoP4 value of the	0	•
		programmable card.	1	
P27.16		0–65535		
	C_MoP5	Used to monitor/view the MoP5 value of the	0	•
		programmable card.	1	
P27.17	C MoP6	0–65535	0	
		Used to monitor/view the MoP6 value of the		

Function code	Name	Detailed parameter description	Default value	Modify
		programmable card.		
P27.18	C_MoP7	0–65535 Used to monitor/view the MoP7 value of the programmable card.	0	•
P27.19	C_MoP8	0–65535 Used to monitor/view the MoP8 value of the programmable card.	0	•
P27.20	C_MoP9	0–65535 Used to monitor/view the MoP9 value of the programmable card.	0	•
P27.21	C_MoP10	0–65535 Used to monitor/view the MoP10 value of the programmable card.	0	•
P27.22	Digital input terminal status of programmable card	0x00–0x3F Bit5–Bit0 indicate PS6–PS1 respectively.	0x00	•
P27.23	Digital output terminal status of programmable card	0x0–0x3 Bit0 indicates PRO1, and Bit1 indicates PRO2.	0x0	•
P27.24	Al1 of the programmable card	0–10.00V/0.00–20.00mA Al1 value from the programmable card.	0	•
P27.25	AO1 of programmable card	0–10.00V/0.00–20.00mA AO1 value from the programmable card.	0	•
P27.26	Length of data sent by programmable card and PZD communication object	0x00–0x28 Ones place: Quantity of data sent from the programmable card and VFD (that is, quantity of data sent from the programmable card + from VFD sending table 1 + from VFD sending table 2) 0: 0+24+60 1: 12+24+60 2: 24+24+60 3: 36+24+60 4: 48+24+60 5: 60+48+60	0x03	0

Function code	Name	Detailed parameter description	Default value	Modify
		6: 72+24+60 7: 84+24+60 8: 96+96+96 Tens place: Card that communicates with the programmable card through PZD (valid only when the ones place of P27.26 is 5) 0: DP card 1: CANopen card 2: PN card Note: P27.26 can be changed at any time, but the change will take effect only after the re-power on.		
P27.27	Programmable card save function at power failure	0-1 0: Disable 1: Enable	1	0

P28 group—Master/slave control functions

Function code	Name	Detailed parameter description	Default value	Modify
P28.00	Master/slave mode selection	O: The master/slave control is invalid This machine is a master This machine is a slave	0	©
P28.01	Master/slave communication data selection	0: CAN 1: Reserved	0	0
P28.02	Master/slave control mode	Ones: Master/slave running mode selection 0: Master/slave mode 0 (The master and slave adopt speed control and maintain the power balance by droop control) 1: Master/slave mode 1 (The master and slave must be in the same type of vector control mode. The master is speed control, and the slave will be forced to be in the torque control mode. 2: Master/slave mode 2 Start in the slave first speed mode (master/slave mode 0) and then switch to torque mode at a certain frequency point (master/slave mode 1) Tens: Slave start command source selection	0x001	0

Function code	Name	Detailed parameter description	Default value	Modify
		0: Follow the master to start		
		1: Determined by P00.01		
		Hundreds: Slave transmitting/master receiving		
		data enable		
		0: Enable		
		1: Disable		
P28.03	Slave speed gain	0.0–500.0%	100.0%	0
P28.04	Slave torque gain	0.0–500.0%	100.0%	0
	Speed/torque			
	mode switching			
P28.05	frequency point in	0.00–10.00Hz	5.00Hz	0
	master/slave			
	mode 2			
P28.06	Slave count	1–15	1	0
P28.07-	Reserved			
P28.08	reserved			
P28.09	CAN slave torque	-100.0–100.0%	0.0%	0
	offset	0.00 0.44		
	Enabling EC	0x00–0x11 Ones place: PT100 temperature detection 0: Disable 1: Enable Tens place: PT1000 temperature detection		
	PT100/PT1000 to			
P28.10	detect		0x00	0
	temperature	0: Disable		
	50 DT100	1: Enable		
	EC PT100	Protection threshold of overheating (OH) detected		
P28.11	detected OH	by the expansion card (EC) with PT100.	120.0°C	0
	protection threshold	0.0–150.0°C		
	EC PT100	5		
P28.12	detected OH pre-	Pre-alarm threshold of OH detected by the EC with PT100.	100.0°C	0
1 20.12	alarm threshold	0.0–150.0°C	100.0	
	EC PT100			
	detected	Calibration upper limit of temperature detected by		
P28.13	temperature	the EC with PT100.	120.0°C	0
	calibration upper			
	limit			
	EC PT100	Calibration lower limit of temperature detected by		
P28.14	detected	the EC with PT100.	10.0°C	0
	temperature	-20.0-50.0°C		

Function code	Name	Detailed parameter description	Default value	Modify
	calibration lower			
P28.15	EC PT100 calibration upper limit digital	0–4096	2950	0
P28.16	EC PT100 calibration lower limit digital	0–4096	1270	0
P28.17	EC PT1000 detected OH protection threshold	0.0–150.0°C	120.0°C	0
P28.18	EC PT1000 detected OH pre- alarm threshold	0.0–150.0°C	100.0°C	0
P28.19	PT1000 detected temperature calibration upper limit	50.0–150.0°C	120.0°C	0
P28.20	EC PT1000 detected temperature calibration lower limit	-20.0–50.0°C	10.0°C	0
P28.21	EC PT1000 calibration upper limit digital	0–4096	3100	0
P28.22	EC PT1000 calibration lower limit digital	0–4096	1100	0
P28.23	Detecting for PT100/PT1000 disconnection from EC	0x00–0x11 Ones place: PT100 disconnection detection 0: Disable 1: Enable Tens place: PT1000 disconnection detection 0: Disable 1: Enable	0x00	0
P28.24	Enabling digital calibration in EC PT100/PT1000	0-4 0: Disable 1: Enable PT100 lower limit digital calibration. 2: Enable PT100 upper limit digital calibration. 3: Enable PT1000 lower limit digital calibration.	0	0

Function code	Name	Detailed parameter description	Default value	Modify
	temperature detection	4: Enable PT1000 upper limit digital calibration.		
P28.25	Type of sensor for Al/AO card to detect motor temperature	0-4 0: No temperature sensor 1: PT100 2: PT1000 3: KTY84 4: PTC (Measuring resistance only) Note: Temperature is displayed through P19.21. This parameter is valid only when the temperature resistor connects to AO1 and Al1. To measure temperature, switch the output of AO1 to current, and connect one end of the temperature resistor to Al1 and AO1, and the other end to GND.	0	0
P28.26	AI/AO detected motor OH protection threshold	0.0–200.0°C Note: When the motor temperature exceeds the threshold, the VFD releases the OT alarm.	110.0°C	0
P28.27	Al/AO detected motor OH pre- alarm threshold	0.0–200.0°C Note: When the motor temperature exceeds the value, the DO terminal with function 48 (Al detected motor OH pre-alarm) outputs a valid signal.	90.0°C	0
P28.28	Al/AO detected temperature calibration value	-200–200.0°C	0.0°C	0

P90 group—Tension control in speed mode

Function code	Name	Detailed parameter description	Default	Modify
P90.00	Tension control mode	O: Invalid 1: Speed mode 2: Open-loop torque mode 3: Closed-loop torque mode Note: The value 0 indicates tension control is invalid. Select a non-0 value to enable the tension control function.	0	0
P90.01	Winding/ unwinding mode	O: Winding I: Unwinding Note: The motor forward rotation direction is the winding direction. When using the tension control mode, check whether the motor rotation direction is correct in the winding mode; if not, change the	0	0

Function code	Name	Detailed parameter description	Default	Modify
		rotation direction by swapping two phase wires of		
		the motor. After the rotation direction is corrected,		
		the winding mode can be switched to the		
		unwinding mode by setting P90.01 to 1 or		
		changing the winding/unwiding switchover		
		terminals.		
	Deal machanical	0.01–600.00		
P90.02	Reel mechanical	=Motor rotation speed/Reel rotation speed=Reel	1.00	0
	transmission rate	diameter/Motor shaft diameter		
P90.03	Max. linear speed	0.0–6000.0 m/min	1000.0 m/min	0
		0: Keypad		
		1: Al1		
P90.04	Input source of	2: AI2	0	0
P90.04	linear speed	3: AI3	U	0
		4: High-speed pulse HDI		
		5: Main traction encoder frequency-division input		
P90.05	Linear speed set	0.0–100.0%	20.0%	0
1 90.03	through keypad	0.0-100.070	20.070	0
P90.06	Diameter of main	0.0–6000.0mm	99.0mm	0
1 00.00	traction	0.0 0000.011111	00.011111	
P90.07	Main traction	0.000–60.000	1.000	0
	drive ratio			
P90.08	Linear speed	0.00–600.00s	0.00s	0
	ACC time			
P90.09	Linear speed DEC time	0.00–600.00s	0.00s	0
		0x00-0x14		
		Ones place: Tension setting source		
		0: Keypad		
		1: Al1		
P90.10	Tension setting	2: AI2	0x00	0
1 30.10	Terision setting	3: AI3	0,00	
		4: High-speed pulse HDI		
		Tens place: Multiplier of max. tension (P90.12)		
		0: 1		
		1: 10		
P90.11	Tension set	0.0–100.0%	10.0%	0

Function code	Name	Detailed parameter description	Default	Modify
	through keypad			
P90.12	Max. tension	When the tens place of P90.10 is 0, the setting range is 0–60000N. When the tens place of P90.10 is 1, the setting range is (0–60000)*10N.	1000N	0
P90.13	Roll diameter calculation mode	0: Not calculated 1: Al1 2: Al2 3: Al3 4: High-speed pulse HDI 5: Linear speed 6: Thickness (of wire) 7: Thickness (of strip)	0	0
P90.14	Roll diameter calculation delay time	0.0–100.0s	1.0s	0
P90.15	Min. roll diameter	0.0mm–P90.16	50.0mm	0
P90.16	Max. roll diameter	P90.15–5000.0mm	1000.0 mm	0
P90.17	Initial roll diameter 1	P90.15–P90.16 (mm)	100.0 mm	0
P90.18	Initial roll diameter 2	P90.15–P90.16 (mm)	100.0 mm	0
P90.19	Initial roll diameter 3	P90.15–P90.16 (mm)	100.0 mm	0
P90.20	Linear speed roll diameter calculation filter time	0.000-60.000s	2.000s	0
P90.21	Linear speed roll diameter calculation restriction	0x00–0x11 Ones place: 0:No 1: Restrict changes in reverse direction Tens place: 0: No 1: Automatic restriction according to running frequency and material thickness	0x00	0
P90.22	Material	0.001–65.535mm	0.010	0

Function code	Name	Detailed parameter description	Default	Modify
	thickness		mm	
P90.23	Number of coils per layer	1–10000	1	0
P90.24	Revolution counting function selection	0-2 0: Digital terminal input 1: PG card input (Applicable to thickness calculation method) 2: Running frequency (No input automatic revolution counting)	0	0
P90.25	Number of pulses per revolution	1–60	1	0
P90.26	Roll diameter set value	0.0–100.0%	80.0%	0
P90.27	Roll diameter reset setting	0x0000–0x1111 Ones place: At stop 0: Remain current roll diameter 1: Restore to initial roll diameter Tens place: Power off at running 0: Remain current roll diameter 1: Restore to initial roll diameter 1: Restore to initial roll diameter Hundreds place: Reach the roll diameter set value 0: Remain current roll diameter 1: Restore to initial roll diameter 1: Restore to initial roll diameter Thousands place: Terminal reset limitation 0: Reset allowed at running 1: Reset only allowed at stop	0x1000	0
P90.28	Tension PID output reference	0–1 0: Max. value 1: Given value	0	0
P90.29	Tension PID parameter source	0–5 0: First group of P90 1: Roll diameter (max. roll diameter) 2: Main reference frequency (max. Frequency) 3: Running linear speed (max. linear speed) 4: Deviation (Reference 100%) 5: Terminal	0	0
P90.30	Group 1 proportional gain	0.000–30.000	0.030	0

Function code	Name	Detailed parameter description	Default	Modify
P90.31	Group 1 integral time	0.00–30.00s	5.00s	0
P90.32	Group 1 differential time	0.00-10.00s	0.00s	0
P90.33	Group 2 proportional gain	0.000–30.000	0.030	0
P90.34	Group 2 integral time	0.00–30.00s	5.00s	0
P90.35	Group 2 differential time	0.00-10.00s	0.00s	0
P90.36	PID parameter adjustment reference point 1	0.0%-P90.37	10.0%	0
P90.37	PID parameter adjustment reference point 2	P90.36–100.0%	50.0%	0
P90.38	Min. frequency for roll diameter calculation	0.00–50.00Hz	0.30Hz	0
P90.39	Min. linear speed for roll diameter calculation		3.0%	0

P91 group—Tension control in torque mode

Function code	Name	Detailed parameter description	Default	Modify
P91.00	Tension control zero speed reference	0–1 0: Max. linear speed 1: Reserved	0	0
P91.01	Tension control zero speed threshold	0.0–50.0%	0.5%	0
P91.02	Zero speed offset	0.0–50.0%	2.0%	0
P91.03	Upper-limit frequency source of torque control	0–3 0: P03.14, P03.15 1: Forward rotation limit set by line speed 2: Reverse rotation limit set by line speed 3: Forward and reverse rotations limit set by line speed	3	0

Function code	Name	Detailed parameter description	Default	Modify	
P91.04	Running frequency upper limit offset of tension control	0.0–100.0%	5.0%	0	
P91.05	Differential separation threshold	0.0–100.0%	5.0%	0	
P91.06	PID restricts reverse limit at zero speed	0–1 0: Enable 1: Disable	0	©	
P91.07	Torque compensation selection	0x000–0x111 Ones place: Frictional torque compensation 0: No 1: Yes Tens place: Inertia compensation 0: No 1: Yes Hundreds place: Compensation direction 0: In line with torque direction 1: Different from torque direction	0x000	0	
P91.08	System mechanical parameters identification	0–2 0: No operation 1: Enable system mechanical inertia identification 2: Enable mechanical friction torque identification	0	0	
P91.09	Static friction torque compensation coefficient	0.0–100.0%	0.0%	0	
P91.10	Sliding friction torque compensation coefficient 1	0.0–100.0%	0.0%	0	
P91.11	Sliding friction torque compensation coefficient 2	0.0–100.0%	0.0%	0	
P91.12	Sliding friction torque compensation	0.0–100.0%	0.0%	0	

Function code	Name	Detailed parameter description	Default	Modify
	coefficient 3			
P91.13	High speed torque compensation coefficient	0.0–100.0%	0.0%	0
P91.14	Compensation frequency point of static friction torque	0.0%-P91.15	1.0%	0
P91.15	Compensation frequency point of sliding friction torque 1	P91.14–P91.16 (%)	20.0%	0
P91.16	Compensation frequency point of sliding friction torque 2	P91.15–P91.17 (%)	50.0%	0
P91.17	Compensation frequency point of sliding friction torque 3	P91.16–P91.18 (%)	80.0%	0
P91.18	High-speed friction torque compensation frequency point	P91.17–100.0%	100.0%	0
P91.19	ACC/DEC frequency source	0–1 0: Linear speed 1: Running frequency	0	0
P91.20	Material density	0–30000kg/m³	0 kg/m ³	0
P91.21	Reel width	0.000–60.000m	0.000m	0
P91.22	ACC inertia compensation coefficient	0.0–100.0%	10.0%	0
P91.23	DEC inertia compensation coefficient	0.0–100.0%	10.0%	0
P91.24	Tension taper coefficient source	0–4 0: Keypad	0	0

Function code	Name	Detailed parameter description	Default	Modify
		1: Al1		
		2: AI2		
		3: AI3		
		4: High-speed pulse HDI		
P91.25	Tension taper set through keypad	0.0–100.0%	30.0%	0
P91.26	Tension taper compensation correction	0.0–5000.0mm	0.0mm	0
P91.27	Tension taper curve selection	0–1 0: Inverse proportional curve 1: Multi-point curve	0	0
P91.28	Roll diameter value 1	0.0–5000.0mm	200.0 mm	0
P91.29	Tension taper coefficient for roll diameter value 1	0.0–50.0%	3.0%	0
P91.30	Roll diameter value 2	0.0–5000.0mm	500.0 mm	0
P91.31	Tension taper coefficient for roll diameter value 2	0.0–50.0%	7.0%	0
P91.32	Tension offset value at zero speed	0.0–300.0%	0.0%	0
P91.33	Present roll diameter setting	0.0–5000.0mm	0.0mm	0

P92 group—Customized tension control functions

Function code	Name	Detailed parameter description	Default	Modify
P92.00	Pre-drive speed gain	0.0–100.0%	100.0%	0
P92.01	Pre-drive torque limit	0-2 0: Set based on P03.20, P03.21 1: Set based on P93.02 2: Set based on the set tension	2	0
P92.02	Pre-drive torque limit setting	0.0–200.0%	100.0%	0

Function code	Name	Detailed parameter description	Default	Modify
P92.03	Zero bit conversion	0–1 0: Disable	0	0
1 32.00	enabling	1: Enable	Ü	•
P92.04	Initial zero bit	0.0–100.0%	10.0%	0
P92.05	Final zero bit	0.0–100.0%	50.0%	0
P92.06	Conversion time from initial zero bit to final zero bit	0.00-60.00s	5.00s	0
P92.07	Conversion time from final zero bit to initial zero bit	0.00–60.00s	5.00s	0
P92.08	Feeding interrupt detection mode	 0-3 0: Not detect 1: Detect based on digital value 2: Detect based on roll diameter calculation value 3: Detect based on feedback position 	0	0
P92.09	Feeding interrupt detection start delay time	0.0–200.0s	20.0s	0
P92.10	Frequency lower limit of feeding interrupt detection	0.00–300.00Hz	10.00Hz	0
P92.11	Error range of feeding interrupt detection	0.1–50.0%	10.0%	0
P92.12	Determination delay time of feeding interrupt detection	0.1–60.0s	1.0s	0
P92.13	Handling mode of feeding interrupt	0x000–0x111 Ones place: Stop mode 0: Decelerate to stop in emergency manner 1: Coast to stop Tens place: Alarm mode 0: Stop in specified mode without reporting alarms 1: Report an alarm and coast to stop	0x000	0

Function code	Name Detailed parameter description		Default	Modify
		Hundreds place: Roll diameter memory function of		
		feeding interrupt 0: Disable		
		1: Enable		
D00.44	Stop braking	0.00.200.0011-	1 FOL I-	
P92.14	frequency	0.00–300.00Hz	1.50Hz	0
P92.15	Stop braking time	0.0–600.0s	0.0s	0

P93 group—Tension control status viewing

Function code	Name	Detailed parameter description	Default	Modify
P93.00	Actual control mode	0-3 0: Invalid tension control 1: Close-loop tension speed control 2: Open loop tension torque control 3: Close-loop tension torque control	0	•
P93.01	Actual winding/ unwinding mode	0–1 0: Winding 1: Unwinding	0	•
P93.02	Initial roll diameter	0.0–5000.0mm	0.0mm	•
P93.03	Reset roll diameter	0.0–5000.0mm	0.0mm	•
P93.04	Roll diameter change rate	0.00–655.35 mm/s	0.00 mm/s	•
P93.05	Present roll diameter	0.0–5000.0mm	0.0mm	•
P93.06	Roll diameter for linear speed calculation	0.0–5000.0mm	0.0mm	•
P93.07	Set linear speed	0.0–6000.0 m/min	0.0 m/min	•
P93.08	Present linear speed	0.0–6000.0 m/min	0.0 m/min	•
P93.09	Main reference frequency	0.00Hz-P00.03	0.00Hz	•
P93.10	Actual proportional gain	0.00–30.00	0.00	•
P93.11	Actual integral	0.00–30.00s	0.00s	•

Function code	Name	Detailed parameter description	Default	Modify
	time			
P93.12	Proportional output value	0–65535	0	•
P93.13	Integral output value	0–65535	0	•
P93.14	PID upper limit	-100.0–100.0%	0.0%	•
P93.15	PID lower limit	-100.0–100.0%	0.0%	•
P93.16	PID output frequency	-99.99–99.99Hz	0.00Hz	•
P93.17	Main traction running frequency	-300.0–300.0Hz	0.0Hz	•
P93.18	Set tension	0–30000N	0N	•
P93.19	Tension taper coefficient	0.0–100.0%	0.0%	•
P93.20	Actual tension	0–30000N	0N	•
P93.21	Basic torque reference value	-300.0–300.0%	0.0%	•
P93.22	Friction compensation torque value	-300.0–300.0%	0.0%	•
P93.23	System rotational inertia	0.00–655.35 kg.m²	0.00 kg.m ²	•
P93.24	Frequency change rate	-99.99–327.67 Hz/s	0.00 Hz/s	•
P93.25	Torque compensation value of system rotational inertia	-300.0–300.0%	0.0%	•
P93.26	Reference value after torque compensation	-300.0–300.0%	0.0%	•
P93.27	PID output torque	-300.0–300.0%	0.0%	•
P93.28	Final output torque	-300.0–300.0%	0.0%	•
P93.29	Measured tension	0–30000N	0 N	•

Function code	Name	Detailed parameter description	Default	Modify
	Number of			
P93.30	material turns on	-100–32767	0	•
	the reel			
	Length of			
P93.31	material on the	0–65535m	0m	•
	reel			
P93.32	Length increment	0.0–6553.5m	0.0m	•

7 Troubleshooting

7.1 What this chapter contains

The chapter tells how to reset faults and check faults history. A complete list of alarms and fault information as well as possible causes and corrective measures are presented in this chapter.

Only well-trained and qualified professionals are allowed to carry out the work described in this chapter. Operations should be carried out according to the instructions presented in chapter 1 "Safety precautions".

7.2 Indications of alarms and faults

The fault is indicated by indicators (refer to section 5.4 Operating the VFD through the keypad). When the TRIP indicator is on, the alarm or fault code displayed in the keypad indicates the VFD is in exception state. This chapter covers most of the alarms and faults, and their possible causes and corrective measures.

7.3 Fault reset

You can reset the VFD via STOP/RST key on the keypad, digital inputs, or by cutting off the VFD power. After faults are removed, the motor can be start again.

7.4 Fault history

P07.27–P07.32 record the six latest fault types; P07.33–P07.40, P07.41–P07.48, and P07.49–P07.56 record the running data of the VFD when the latest three faults occurred.

7.5 VFD faults and solutions

When fault occurred, process the fault as shown below.

- 1. When VFD fault occurred, confirm whether keypad display is improper.
- If keypad works properly, check the function codes in P07 group to confirm the corresponding fault record parameters, and determine the real state when current fault occurred through parameters;
- Check the table below to see whether corresponding exception states exist based on the corresponding corrective measures;
- 4. Rule out the faults or ask for help from professionals;
- 5. After confirming faults are removed, reset the fault and start running.

7.5.1 Details of faults and solutions

Note: The numbers enclosed in square brackets such as [1], [2] and [3] in the **Fault type** column in the following table indicate the VFD fault type codes read through communication.

Fault code	Fault type	Possible cause	Corrective measures
OUt1	[1] Inverter unit phase-U protection	Acceleration is too fast; IGBT module is damaged;	Increase acceleration time; Replace the power unit;
OUt2	[2] Inverter unit phase-V protection	Misacts caused by interference; drive wires are	Check drive wires; Check whether there is strong
OUt3	[3] Inverter unit	poorly connected ;	interference surrounds the

Fault code	Fault type	Possible cause	Corrective measures
	phase-W protection	To-ground short circuit occurs	peripheral equipment
OV1	[7] Over-voltage during acceleration	Exception occurred to input	Check input power; Check whether load
OV2	[8] Over-voltage during deceleration	voltage; Large energy feedback;	deceleration time is too short; or the motor starts during
OV3	[9] Over-voltage during constant speed running	Lack of braking units; Dynamic braking is not enabled	rotating; Install dynamic braking units; Check the setting of related function codes
OC1	[4] Over-current during acceleration		Increase acceleration /deceleration time;
OC2	[5] Over-current during deceleration	Acceleration is too fast; Grid voltage is too low;	Check input power; Select the VFD with larger
OC3	[6] Over-current during constant speed running	VFD power is too small; Load transient or exception occurred; To-ground short circuit or output phase loss occur; Strong external interference sources; Overvoltage stall protection is not enabled	power; Check if the load is short circuited (to-ground short circuit or line-to-line short circuit) or the rotation is not smooth; Check the output wiring; Check if there is strong interference; Check the setting of related function codes.
UV	[10] Bus undervoltage fault	Grid voltage is too low; Overvoltage stall protection is not enabled	Check grid input power; Check the setting of related function codes
OL1	[11] Motor overload	Grid voltage is too low; Rated motor current is set improperly; Motor stall or load jumps violently	Check grid voltage; Reset rated motor current; Check the load and adjust torque boost
OL2	[12] VFD overload	Acceleration is too fast; The motor in rotating is restarted; Grid voltage is too low; Load is too large; Power is too small;	Increase acceleration time; Avoid restart after stop; Check grid voltage; Select the VFD with larger power; Select proper motor

Fault code	Fault type	Possible cause	Corrective measures
SPI	[13] Phase loss on input side	Phase loss or violent fluctuation occurred to R, S and T input	Check the input power; Check installation wiring
SPO	[14] Phase loss on output side	Phase loss occurred to U, V, W output (or the three phases of motor is asymmetrical)	Check the output wiring; Check the motor and cable
OH1	[15] Overheat of rectifier module	Air duct is blocked or fan is damaged;	Ventilate the air duct or replace
OH2	[16] Overheat of VFD module	Ambient temperature is too high; Long-time overload running	the fan; Lower the ambient temperature
EF	[17] External fault	SI external fault input terminal acts	Check external device input
CE	[18] Modbus/Modbus TCP communication fault	Baud rate is set improperly; Communication line fault; Communication address error; Communication suffers from strong interference	Set proper baud rate; Check the wiring of communication interfaces; Set proper communication address; Replace or change the wiring to enhance anti-interference capacity
ItE	[19] Current detection fault	Poor contact of the connector of control board; Hall component is damaged; Exception occurred to amplification circuit	Check the connector and replug; Replace the hall component; Replace the main control board
tΕ	[20] Motor autotuning fault	Motor capacity does not match with the VFD capacity, this fault may occur easily if the difference between them is exceeds five power classes; Motor parameter is set improperly; The parameters gained from autotuning deviate sharply from the standard parameters;	Change the VFD model, or adopt V/F mode for control; Set proper motor type and nameplate parameters; Empty the motor load and carry out autotuning again; Check motor wiring and parameter setting; Check whether upper limit frequency is larger than 2/3 of the rated frequency

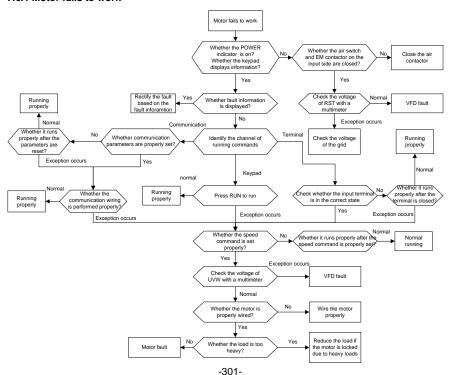
Fault code	Fault type	Possible cause	Corrective measures
		Autotuning timeout	
EEP	[21] EEPROM fault	R/W error occurred to the control parameters; EEPROM is damaged	Press STOP/RST to reset; Replace the main control board
PIDE	[22] PID feedback offline fault	PID feedback offline; PID feedback source disappears;	Check PID feedback signal wires; Check PID feedback source
bCE	[23] Braking unit fault	Braking circuit fault or braking tube is damaged; The resistance of external braking resistor is too small	Check the braking unit, replace with new braking tubes; Increase braking resistance
END	[24] Running time is up	The actual running time of the VFD is larger than the set running time	Ask help from the supplier, adjust the set running time
OL3	[25] Electronic overload fault	The VFD releases overload pre-alarm based on the set value	Check the load and overload pre-alarm threshold
PCE	[26] Keypad communication fault	The keypad wire is poorly contacted or disconnected; The keypad wire is too long and suffers strong interference; Circuit fault occurred to the keypad or communication part of the main board	Check the keypad wires to confirm whether fault exists; Check the surroundings to rule out interference source; Replace the hardware and ask for maintenance service
UPE	[27] Parameter upload error	The keypad wire is poorly contacted or disconnected; The keypad wire is too long and suffers strong interference; Circuit fault occurred to the keypad or communication part of the main board	Check the surroundings to rule out interference source; Replace the hardware and ask for maintenance service; Replace the hardware and ask for maintenance service
DNE	[28] Parameter download error	The keypad wire is poorly contacted or disconnected; The keypad wire is too long and suffers strong interference;	Check the surroundings to rule out interference source; Replace the hardware and ask for maintenance service; Re-backup keypad data

Fault code	Fault type	Possible cause	Corrective measures
		Data storage error occurred to the keypad	
ETH1	[32] To-ground short circuit fault 1	VFD output is short connected to the ground; Current detection circuit is faulty; Actual motor power setting deviates sharply from the VFD power	Check whether motor wiring is proper; Replace the hall component; Replace the main control board; Reset the motor parameters properly
ETH2	[33] To-ground short circuit fault 1	VFD output is short connected to ground; Current detection circuit is faulty; Actual motor power setting deviates sharply from the VFD power	Check whether motor wiring is proper; Replace the hall component; Replace the main control board; Reset the motor parameters properly
dEu	[34] Speed deviation fault	Load is too heavy, or stall occurred	Check the load to ensure it is proper, increase the detection time; Check whether control parameters are set properly
STo	[35] Maladjustment fault	Control parameters of synchronous motor is set improperly; The parameter gained from autotuning is inaccurate; The VFD is not connected to motor	Check the load to ensure it is proper, Check whether load is proper; Check whether control parameters are set correctly; Increase maladjustment detection time
LL	[36] Electronic underload fault	The VFD performs underload pre-alarm based on the set value	Check the load and overload pre-alarm threshold
ENC1o	[37] Encoder offline fault	Encoder line sequence is wrong, or signal wires are poorly connected	Check the encoder wiring
ENC1d	[38] Encoder reversal fault	The encoder speed signal is contrary to the motor running direction	Reset encoder direction
ENC1Z	[39] Encoder Z pulse offline fault	Z signal wires are disconnected	Check the wiring of Z signal

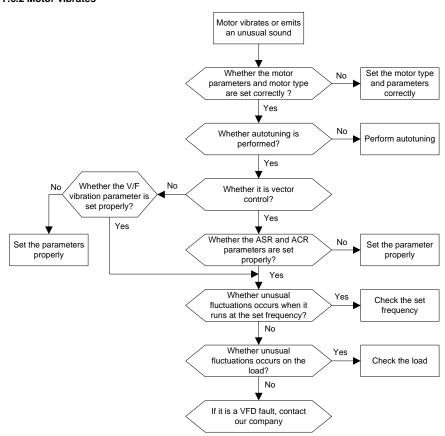
Fault			
code	Fault type	Possible cause	Corrective measures
ОТ	[59] Motor over- temperature fault	Motor over-temperature input terminal is valid; Exception occurred to t temperature detection Exception occurred to resistor; Long-time overload running or exception occurred	Check the wiring of motor over- temperature input terminal (terminal function 57); Check whether temperature sensor is proper; Check the motor and perform maintenance on the motor
STO	[40] Safe torque off	Safe torque off function is enabled by external forces	1
STL1	[41] Exception occurred to safe circuit of channel H1	The wiring of STO is improper; Fault occurred to external switch of STO; Hardware fault occurred to safety circuit of channel H1	Check whether terminal wiring of STO is proper and firm enough; Check whether external switch of STO can work properly; Replace the control board
STL2	[42] Exception occurred to channel H2 safe circuit	The wiring of STO is improper; Fault occurred to external switch of STO; Hardware fault occurred to safety circuit of channel H2	Check whether terminal wiring of STO is proper and firm enough; Check whether external switch of STO can work properly; Replace the control board
STL3	[43] Exception occurred to channel H1 and channel H2	Hardware fault occurred to STO circuit	Replace the control board
CrCE	[44] Safety code FLASH CRC check fault	Control board is faulty	Replace the control board
E-Err	[55] Repetitive expansion card type	The two inserted expansion cards are of the same type	You should not insert two cards with the same type; check the type of expansion card, and remove one card after power down
ENCUV	[56] Encoder UVW loss fault	No electric level variation occurred to UVW signal	Check the wiring of UVW; Encoder is damaged
F1-Er	[60] Failed to identify the expansion card in card slot 1	There is data transmission in interfaces of card slot 1, however, it cannot read the card type	Confirm whether the expansion card inserted can be supported; Stabilize the expansion card

Fault code	Fault type	Possible cause	Corrective measures
			interfaces after power down, and confirm whether fault still occurs at next power-on; Check whether the insertion port is damaged, if yes, replace the insertion port after power down
F2-Er	[61] Failed to identify the expansion card in card slot 2	There is data transmission in interfaces of card slot 2, however, it cannot read the card type	Confirm whether the expansion card inserted can be supported; Stabilize the expansion card interfaces after power down, and confirm whether fault still occurs at next power-on; Check whether the insertion port is damaged, if yes, replace the insertion port after power down
F3-Er	[62] Failed to identify the expansion card in card slot 3	There is data transmission in interfaces of card slot 3, however, it cannot read the card type	Confirm whether the expansion card inserted can be supported; Stabilize the expansion card interfaces after power down, and confirm whether fault still occurs at next power-on; Check whether the insertion port is damaged, if yes, replace the insertion port after power down
C1-Er	[63] Communication timeout occurred to the expansion card in card slot 1	There is no data transmission in interfaces of card slot 1	Confirm whether the expansion card inserted can be supported; Stabilize the expansion card interfaces after power down, and confirm whether fault still occurs at next power-on; Check whether the insertion port is damaged, if yes, replace the insertion port after power

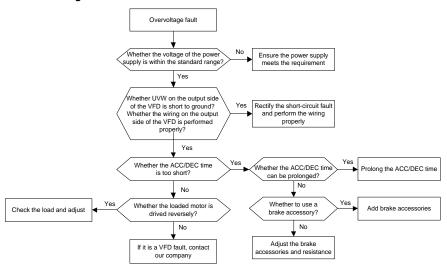
Fault code	Fault type	Possible cause	Corrective measures
			down
C2-Er	[64] Communication timeout occurred to the expansion card in card slot 2	There is no data transmission in interfaces of card slot 2	Confirm whether the expansion card inserted can be supported; Stabilize the expansion card interfaces after power down, and confirm whether fault still occurs at next power-on; Check whether the insertion port is damaged, if yes, replace the insertion port after power down
C3-Er	[65] Communication timeout occurred to the expansion card in card slot 3	There is no data transmission in interfaces of card slot 3	Confirm whether the expansion card inserted can be supported; Stabilize the expansion card interfaces after power down, and confirm whether fault still occurs at next power-on; Check whether the insertion port is damaged, if yes, replace the insertion port after power down
E-NET	[30] Ethernet card communication timeout fault	There is no data transmission between the communication card and the host computer	Check whether the communication card wiring is loose or dropped
E-CAN	[31] CANopen card communication timeout fault	There is no data transmission between the communication card and the host computer (or PLC)	Check whether the communication card wiring is loose or dropped
E-PN	[57] PROFINET card communication timeout fault	There is no data transmission between the communication card and the host computer (or PLC)	Check whether the communication card wiring is loose or dropped
E-CAT	[66] EtherCAT card communication timeout fault	There is no data transmission between the communication card and the	Check whether the communication card wiring is loose or dropped

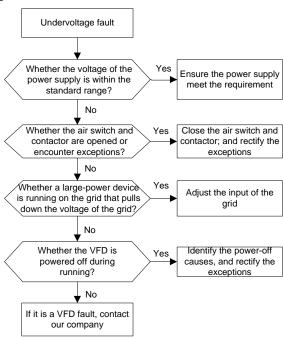

Fault code	Fault type	Possible cause	Corrective measures
		host computer (or PLC)	
SECAN	[58] CAN master/slave communication card communication timeout fault	There is no data transmission between the CAN master and slave communication cards	Check whether the communication card wiring is loose or dropped
S-Err	[69] CAN slave fault in master/slave synchronization	Fault occurred to one of the CAN slave VFDs	Detect the CAN slave VFD and analyze the corresponding fault cause of the VFD

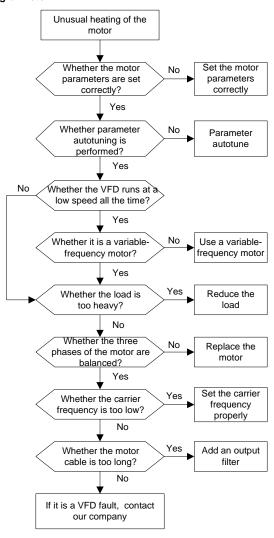
7.5.2 Other state

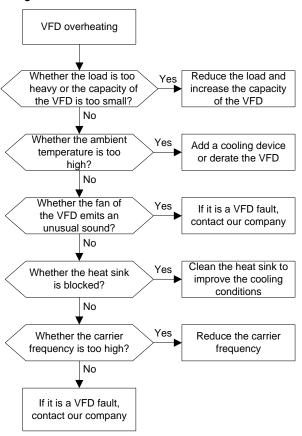

Displayed code	State type	Possible cause	Solution
PoFF	System power	The system is powered off or	Check the grid
1011	failure	the bus voltage is too low.	conditions.

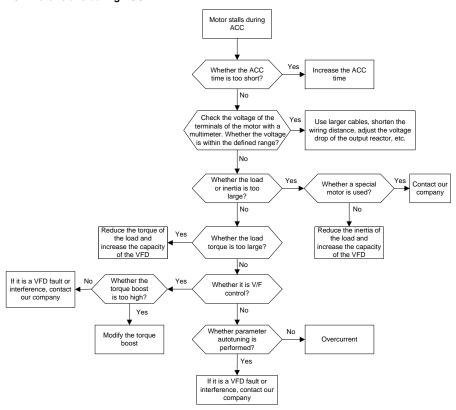
7.6 Analysis on common faults

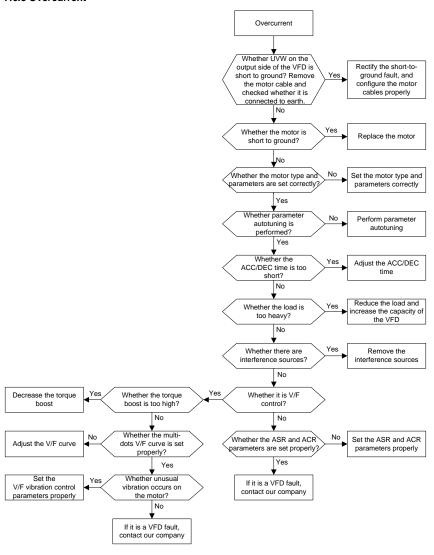

7.6.1 Motor fails to work


7.6.2 Motor vibrates


7.6.3 Overvoltage


7.6.4 Undervoltage


7.6.5 Unusual heating of motor


7.6.6 VFD overheating

7.6.7 Motor stalls during ACC

7.6.8 Overcurrent

7.7 Countermeasures on common interference

7.7.1 Interference on meter switches and sensors

Interference phenomenon

Pressure, temperature, displacement, and other signals of a sensor are collected and displayed by a human-machine interaction device. The values are incorrectly displayed as follows after the VFD is started:

- 1. The upper or lower limit is wrongly displayed, for example, 999 or -999.
- 2. The display of values jumps (usually occurring on pressure transmitters).
- The display of values is stable, but there is a large deviation, for example, the temperature is dozens of degrees higher than the common temperature (usually occurring on thermocouples).
- 4. A signal collected by a sensor is not displayed but functions as a drive system running feedback signal. For example, a VFD is expected to decelerate when the upper pressure limit of the compressor is reached, but in actual running, it starts to decelerate before the upper pressure limit is reached.
- After a VFD is started, the display of all kinds of meters (such as frequency meter and current meter) that are connected to the analog output (AO) terminal of the VFD is severely affected, displaying the values incorrectly.
- Proximity switches are used in the system. After a VFD is started, the indicator of a proximity switch flickers, and the output level flips.

Solution

- Check and ensure that the feedback cable of the sensor is 20 cm or farther away from the motor cable.
- 2. Check and ensure that the ground wire of the motor is connected to the PE terminal of the VFD (if the ground wire of the motor has been connected to the ground block, you need to use a multimeter to measure and ensure that the resistance between the ground block and PE terminal is lower than 1.5Ω).
- Try to add a safety capacitor of 0.1 μF to the signal end of the feedback signal terminal of the sensor.
- Try to add a safety capacitor of 0.1 μF to the power end of the sensor meter (pay attention to the voltage of the power supply and the voltage endurance of the capacitor).
- For interference on meters connected to the AO terminal of a VFD, if AO uses current signals of 0 to 20 mA, add a capacitor of 0.47 μF between the AO and GND terminals; and if AO uses voltage signals of 0 to 10 V. add a capacitor of 0.1 μF between the AO and GND terminals.

Note:

 When a decoupling capacitor is required, add it to the terminal of the device connected to the sensor. For example, if a thermocouple is to transmit signals of 0 to 20 mA to a temperature meter,

the capacitor needs to be added on the terminal of the temperature meter.; if an electronic ruler is to transmit signals of 0 to 30 V to a PLC signal terminal, the capacitor needs to be added on the terminal of the PLC.

If a large number of meters or sensors are disturbed. It is recommended that you configure an
external C2 filter on the input power end of the VFD. For models of filters, see section D.7 Filters.

7.7.2 Interference on communication

Interference phenomenon

The interference described in this section on 485 communication mainly includes communication delay, out of sync, occasional power-off, or complete power-off that occurs after a VFD is started.

If the communication cannot be implemented properly, regardless of whether the VFD is running, the exception is not necessarily caused by interference. You can find out the causes as follows:

- 1. Check whether the 485 communication bus is disconnected or in poor contact.
- 2. Check whether the two ends of line A or B are connected reversely.
- Check whether the communication protocol (such as the baud rate, data bits, and check bit) of the VFD is consistent with that of the upper computer.

If you are sure that communication exceptions are caused by interference, you can resolve the problem through the following measures:

- 1. Simple inspection.
- 2. Arrange the communication cables and motor cables in different cable trays.
- 3. In multi-VFD application scenarios, adopt the chrysanthemum connection mode to connect the communication cables between VFDs, which can improve the anti-interference capability.
- In multi-VFD application scenarios, check and ensure that the driving capacity of the master is sufficient.
- 5. In the connection of multiple VFDs, you need to configure one 120 Ω terminal resistor on each end.

Solution

- Check and ensure that the ground wire of the motor is connected to the PE terminal of the VFD
 (if the ground wire of the motor has been connected to the ground block, you need to use a
 multimeter to measure and ensure that the resistance between the ground block and PE terminal
 is lower than 1.5 Ω).
- Do not connect the VFD and motor to the same ground terminal as the upper computer. It is recommended that you connect the VFD and motor to the power ground, and connect the upper computer separately to a ground stud.
- Try to short the signal reference ground terminal (GND) of the VFD with that of the upper computer controller to ensure that ground potential of the communication chip on the control board of the VFD is consistent with that of the communication chip of the upper computer.

- 4. Try to short GND of the VFD to its ground terminal (PE).
- 5. Try to add a safety capacitor of 0.1 μF on the power terminal of the upper computer (PLC, HMI, and touch screen). During this process, pay attention to the voltage of the power supply and the voltage endurance capability of the capacitor. Alternatively, you can use a magnet ring (Fe-based nanocrystalline magnet rings are recommended). Put the power L/N line or +/- line of the upper computer through the magnet ring in the same direction and wind 8 coils around the magnet ring.

7.7.3 Failure to stop and indicator shimmering due to motor cable coupling

Interference phenomenon

1. Failure to stop

In a VFD system where an S terminal is used to control the start and stop, the motor cable and control cable are arranged in the same cable tray. After the system is started properly, the S terminal cannot be used to stop the VFD.

2. Indicator shimmering

After a VFD is started, the relay indicator, power distribution box indicator, PLC indicator, and indication buzzer shimmers, blinks, or emits unusual sounds unexpectedly.

Solution

- Check and ensure that the exception signal cable is arranged 20 cm or farther away from the motor cable.
- 2. Add a safety capacitor of 0.1 µF between the digital input terminal (S) and the COM terminal.
- Connect the digital input terminal (S) that controls the start and stop to other idle digital input terminals in parallel. For example, if S1 is used to control the start and stop and S4 is idle, you can try to connect S1 to S4 in parallel.

Note: If the controller (such as PLC) in the system controls more than 5 VFDs at the same time through digital input terminals (S), this scheme is not available.

7.7.4 Leakage current and interference on RCD

VFDs output high-frequency PWM voltage to drive motors. In this process, the distributed capacitance between the internal IGBT of a VFD and the heat sink and that between the stator and rotor of a motor may inevitably cause the VFD to generate high-frequency leakage current to the ground. A residual current operated protective device (RCD) is used to detect the power-frequency leakage current when a grounding fault occurs on a circuit. The application of a VFD may cause misoperation of a RCD.

- 1. Rules for selecting RCDs
- (1) VFD systems are special. In these systems, it is required that the rated residual current of common RCDs at all levels is larger than 200 mA, and the VFDs are grounded reliably.
- (2) For RCDs, the time limit of an action needs to be longer than that of a next action, and the time difference between two actions need to be longer than 20 ms. For example, 1s, 0.5s, and 0.2s.
- (3) For circuits in VFD systems, electromagnetic RCDs are recommended. Electromagnetic RCDs

have strong anti-interference capability, and thus can prevent the impact of high-frequency leakage current.

Electronic RCD	Electromagnetic RCD
Low cost, high sensitivity, small in volume, susceptible to voltage fluctuation of the grid and ambient temperature, weak anti-interference capability	Requiring highly sensitive, accurate, and stable zero-phase sequence current transformer, using permalloy high-permeability materials, complex process, high cost, not susceptible to voltage fluctuation of the power supply and ambient temperature, strong anti- interference capability

- 2. Solution to RCD misoperation (handling the VFD)
- (1) Try to reduce the carrier frequency to 1.5 kHz (P00.14=1.5).
- (2) Try to modify the modulation mode to "3PH modulation and 2PH modulation" (P08.40=00).
- 3. Solution to RCD misoperation (handling the system power distribution)
- (1) Check and ensure that the power cable is not soaking in water.
- (2) Check and ensure that the cables are not damaged or spliced.
- (3) Check and ensure that no secondary grounding is performed on the neutral wire.
- (4) Check and ensure that the main power cable terminal is in good contact with the air switch or contactor (all screws are tightened).
- (5) Check 1PH powered devices, and ensure that no earth lines are used as neutral wires by these devices.
- (6) Do not use shielded cables as VFD power cables and motor cables.

7.7.5 Live device chassis

Phenomenon

After a VFD is started, there is sensible voltage on the chassis, and you may feel an electric shock when touching the chassis. The chassis, however, is not live (or the voltage is far lower than the human safety voltage) when the VFD is powered on but not running.

Solution

- If there is power distribution grounding or ground stud on the site, ground the cabinet chassis of the drive system through the power ground or stud.
- If there is no grounding on the site, you need to connect the motor chassis to the ground terminal PE of the VFD, and ensure that the jumper at "EMC/J10" on the middle casing of the VFD is shorted.

8 Maintenance

8.1 What this chapter contains

This chapter describes how to carry out preventive maintenance on UMI-B7 series VFDs.

8.2 Periodical inspection

Little maintenance is required when VFDs are installed in environments that meet requirements. The following table describes the recommended routine maintenance.

	Subject	Item	Method	Criterion
Ambient environment		Check the temperature, and humidity, and whether there is vibration, dust, gas, oil spray, and water droplets in the environment.	Visual inspection, and use instruments for measurement.	The requirements stated in this manual are met.
		Check whether there are foreign matters, such as tools, or dangerous substances placed nearby.	Visual inspection	There are no tools or dangerous substances placed nearby.
	Voltage	Check the voltage of the main circuit and control circuit.	Use multimeters or other instruments for measurement.	The requirements stated in this manual are met.
Keypad		Check the display of information.	Visual inspection	The characters are displayed properly.
		Check whether characters are not completely displayed.	Visual inspection	The requirements stated in this manual are met.
		Check whether the bolts loose or come off.	Screw them up.	No exception occurs.
		Check whether the machine is deformed, cracked, or damaged, or their color changes due to overheating and aging.	Visual inspection	No exception occurs.
Main circuit	Common	Check whether there are stains and dust attached.	Visual inspection	No exception occurs. Note: Discoloration of copper bars does not mean that they cannot work properly.

Subject	Item	Method	Criterion
Conductor and	Check whether the conductors are deformed or their color change due to overheat.	Visual inspection	No exception occurs.
wire	Check whether the wire sheaths are cracked or their color changes.	Visual inspection	No exception occurs.
Terminal block	Check whether there is damage.	Visual inspection	No exception occurs.
	Check whether there is electrolyte leakage, discoloration, cracks, and chassis expansion.	Visual inspection	No exception occurs.
Filter capacitor	Check whether the safety valves are released.	Determine the service life based on the maintenance information, or measure them through electrostatic capacity.	No exception occurs.
	Check whether the electrostatic capacity is measured as required.	Use instruments to measure the capacity.	Electrostatic capacity ≥ initial value × 0.85
	Check whether there is displacement caused due to overheat.	Olfactory and visual inspection	No exception occurs.
Resistor	Check whether the resistors are disconnected.	Visual inspection, or remove one end of the connection cable and use a multimeter for measurement.	Resistance range: ±10% (of the standard resistance)
Transformer and reactor	Check whether there is unusual vibration sounds or smells.	Auditory, olfactory, and visual inspection	No exception occurs.
Electromagnetic contactor and	Check whether there are vibration sounds in the workshop.	Auditory inspection	No exception occurs.
relay	Check whether the contacts	Visual inspection	No exception

Subject		Item	Method	Criterion
		are in good contact.		occurs.
Control circuit	Control PCB, connector	Check whether the screws and connectors loose.	Screw them up.	No exception occurs.
		Check whether there is unusual smell or discoloration.	Olfactory and visual inspection	No exception occurs.
		Check whether there are cracks, damage, deformation, or rust.	Visual inspection	No exception occurs.
		Check whether there is electrolyte leakage or deformation.	Visual inspection, and determine the service life based on the maintenance information.	No exception occurs.
Cooling system	Cooling fan	Check whether there are unusual sounds or vibration.	Auditory and visual inspection, and turn the fan blades with your hand.	The rotation is smooth.
		Check whether the bolts loose.	Screw them up.	No exception occurs.
		Check whether there is discoloration caused due to overheat.	Visual inspection, and determine the service life based on the maintenance information.	No exception occurs.
	Ventilation duct	Check whether there are foreign matters blocking or attached to the cooling fan, air inlets, or air outlets.	Visual inspection	No exception occurs.

8.3 Cooling fan

The service life of the cooling fan of the VFD is more than 25,000 hours. The actual service life of the cooling fan is related to the use of the VFD and the temperature in the ambient environment.

You can view the running duration of the VFD through P07.14 (Accumulated running time).

The increase of the bearing noise indicates a fan fault. If the VFD is applied in a key position, replace the fan once the fan starts to generate unusual noise.

Read chapter 1 Safety precautions carefully and follow the instructions to perform operations. Otherwise, physical injuries or damage to the device may be caused.

 Stop the device, disconnect the AC power supply, and wait for a time no shorter than the waiting time designated on the VFD.

- Open the cable clamp to loosen the fan cable (for VFDs of 460 V, 1.5 to 30 kW, the middle casing needs to be removed).
- 3. Remove the fan cable.
- 4. Remove the fan with a screwdriver.
- 5. Install a new fan in the VFD in the reverse steps. Assemble the VFD. Ensure that the air direction of the fan is consistent with that of the VFD, as shown in the following figure.

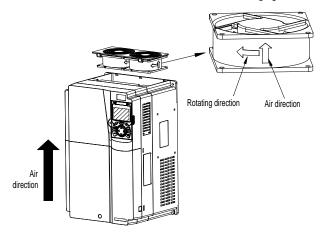


Figure 8-1 Fan maintenance for VFDs of 7.5 kW or higher

6. Power on the VFD.

8.4 Capacitor

8.4.1 Capacitor reforming

If the VFD has been left unused for a long time, you need to follow the instructions to reform the DC bus capacitor before using it. The storage time is calculated from the date the VFD is delivered.

Storage time	Operation principle	
Less than 1 year	No charging operation is required.	
1 to 2 years	The VFD needs to be powered on for 1 hour before the first running command.	
2 to 3 years	Use a voltage controlled power supply to charge the VFD: Charge the VFD at 25% of the rated voltage for 30 minutes, and then charge it at 50% of the rated voltage for 30 minutes, at 75% for another 30 minutes, and finally charge it at 100% of the rated voltage for 30 minutes.	
More than 3 years	Use a voltage controlled power supply to charge the VFD:	

Storage time	Operation principle	
	Charge the VFD at 25% of the rated voltage for 2 hours, and then	
	charge it at 50% of the rated voltage for 2 hours, at 75% for another 2	
	hours, and finally charge it at 100% of the rated voltage for 2 hours.	

The method for using a voltage controlled power supply to charge the VFD is described as follows:

The selection of a voltage controlled power supply depends on the power supply of the VFD. For VFDs with an incoming voltage of 1PH/3PH 230 V AC, you can use a 230 V AC/2 A voltage regulator. Both 1PH and 3PH VFDs can be charged with a 1PH voltage controlled power supply (connect L+ to R, and N to S or T). All the DC bus capacitors share one rectifier, and therefore they are all charged.

For VFDs of a high voltage class, ensure that the voltage requirement (for example, 460 V) is met during charging. Capacitor changing requires little current, and therefore you can use a small-capacity power supply (2 A is sufficient).

The method for using a resistor (incandescent lamp) to charge the drive is described as follows:

If you directly connect the drive device to a power supply to charge the DC bus capacitor, it needs to be charged for a minimum of 60 minutes. The charging operation must be performed at a normal indoor temperature without load, and you must connect a resistor in series mode in the 3PH circuit of the power supply.

For a 460 V drive device, use a resistor of 1 k Ω /100W. If the voltage of the power supply is no higher than 460 V, you can also use an incandescent lamp of 100W. If an incandescent lamp is used, it may go off or the light may become very weak.

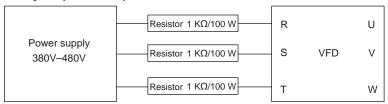


Figure 8-2 Charging circuit example of driving devices of 460 V

8.4.2 Electrolytic capacitor replacement

Read the safety precautions carefully and follow the instructions to perform operations. Otherwise, physical injuries or damage to the device may be caused.

The electrolytic capacitor of a VFD must be replaced if it has been used for more than 35,000 hours.

8.5 Power cable

- Read the safety precautions carefully and follow the instructions to perform operations. Otherwise, physical injuries or damage to the device may be caused.
- Stop the VFD, disconnect the power supply, and wait for a time no shorter than the waiting time designated on the VFD.

2. Check the connection of the power cables. Ensure that they are firmly connected.

3. Power on the VFD.

9 Communication protocol

9.1 What this chapter contains

This chapter describes the communication protocol of UMI-B7 series products.

UMI-B7 series VFDs provide RS485 communication interfaces and adopt the master-slave communication based on the international standard Modbus communication protocol. You can implement centralized control (setting commands for controlling the VFD, modifying the running frequency and related function code parameters, and monitoring the working state and fault information of the VFD) through PC/PLC, upper control computer, or other devices to meet specific application requirements.

9.2 Modbus protocol introduction

Modbus is a software protocol, a common language used in electronic controllers. By using this protocol, a controller can communicate with other devices through transmission lines. It is a general industrial standard. With this standard, control devices produced by different manufacturers can be connected to form an industrial network and be monitored in a centralized way.

The Modbus protocol provides two transmission modes, namely American Standard Code for Information Interchange (ASCII) and remote terminal units (RTU). On one Modbus network, all the device transmission modes, baud rates, data bits, check bits, stop bits, and other basic parameters must be set consistently.

A Modbus network is a control network with one master and multiple slaves, that is, on one Modbus network, there is only one device serving as the master, and other devices are the slaves. The master can communicate with one slave or broadcast messages to all the slaves. For separate access commands, a slave needs to return a response. For broadcasted information, slaves do not need to return responses.

9.3 Application of Modbus

UMI-B7 series VFDs use the RTU mode provided by the Modbus protocol, and RS485 interfaces are used.

9.3.1 RS485

RS485 interfaces work in half-duplex mode and transmit data signals in the differential transmission way, which is also referred to as balanced transmission. An RS485 interface uses a twisted pair, where one wire is defined as A (+), and the other B (-). Generally, if the positive electrical level between the transmission drives A and B ranges from +2 V to +6 V, the logic is "1"; and if it ranges from -2 V to -6 V, the logic is "0".

The 485+ terminal on the terminal block of the VFD corresponds to A, and 485- corresponds to B.

The communication baud rate (P14.01) indicates the number of bits transmitted in a second, and the unit is bit/s (bps). A higher baud rate indicates faster transmission and poorer anti-interference capability. When a twisted pair of 0.56 mm (24 AWG) is used, the maximum transmission distance varies according to the baud rate, as described in the following table.

Baud rate (bps)	Max. transmission distance	Baud rate (bps)	Max. transmission distance
2400	1800 m	9600	800 m
4800	1200 m	19200	600 m

When RS485 interfaces are used for long-distance communication, it is recommended that you use shielded cables, and use the shield layer as the ground wires.

When there are fewer devices and the transmission distance is short, the whole network works well without terminal load resistors. The performance, however, degrades as the distance increases. Therefore, it is recommended that you use a 120 Ω terminal resistor when the transmission distance is long.

9.3.1.1 Application to one VFD

Figure 9-1 is the Modbus wiring diagram of one VFD and a PC. Generally, PCs do not provide RS485 interfaces, so you need to convert an RS232 interface or USB port of a PC to an RS485 interface. Connect end A of the RS485 interface to the 485+ port on the terminal block of the VFD, and connect end B to the 485- port. It is recommended that you use shielded twisted pairs. When an RS232-RS485 converter is used, the cable used to connect the RS232 interface of the PC and the converter cannot be longer than 15 m. Use a short cable when possible. It is recommended that you insert the converter directly into the PC. Similarly, when a USB-RS485 converter is used, use a short cable when possible.

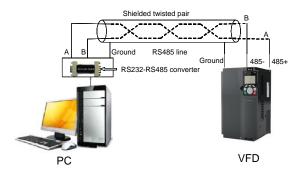


Figure 9-1 Wiring of RS485 applied to one VFD

9.3.1.2 Application to multiple VFDs

In practical application to multiple VFDs, chrysanthemum connection and star connection are commonly used.

According to the requirements of the RS485 industrial bus standards, all the devices need to be connected in chrysanthemum mode with one 120 Ω terminal resistor on each end, as shown in Figure 9-2. Figure 9-3 is the simplified wiring diagram, and Figure 9-4 is the practical application diagram.

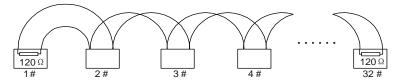


Figure 9-2 On-site chrysanthemum connection diagram

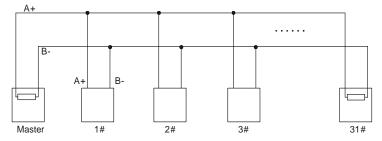


Figure 9-3 Simplified chrysanthemum connection diagram

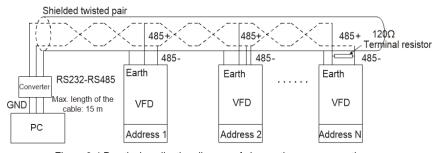


Figure 9-4 Practical application diagram of chrysanthemum connection

Figure 9-5 shows the start connection diagram. When this connection mode is adopted, the two devices that are farthest away from each other on the line must be connected with a terminal resistor (in Figure 9-5, the two devices are devices 1# and 15#).

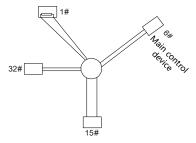


Figure 9-5 Star connection

Use shielded cable, if possible, in multi-device connection. The baud rates, data bit check settings,

and other basic parameters of all the devices on the RS485 line must be set consistently, and addresses cannot be repeated.

9.3.2 RTU mode

9.3.2.1 RTU communication frame structure

When a controller is set to use the RTU communication mode on a Modbus network, every byte (8 bits) in the message includes 2 hexadecimal characters (each includes 4 bits). Compared with the ASCII mode, the RTU mode can transmit more data with the same baud rate.

Code system

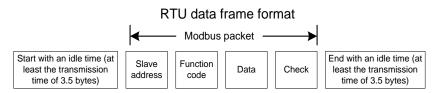
- 1 start bit
- 7 or 8 data bits; the minimum valid bit is transmitted first. Each frame domain of 8 bits includes 2 hexadecimal characters (0–9, A–F).
- 1 odd/even check bit; this bit is not provided if no check is needed.
- 1 stop bit (with check performed), 2 bits (without check)

Error detection domain

Cyclic redundancy check (CRC)

The following table describes the data format.

11-bit character frame (Bits 0 to 7 are data bits)


Start bit	віто	BIT1	BIT2	BIT3	BIT4	BIT5	BIT6	BIT7	Check bit	Stop bit	
-----------	------	------	------	------	------	------	------	------	--------------	----------	--

10-bit character frame (Bits 0 to 6 are data bits)

Start bit	BIT0	BIT1	BIT2	ВІТ3	BIT4	BIT5	BIT6	Check bit	Stop bit	
-----------	------	------	------	------	------	------	------	--------------	----------	--

In a character frame, only the data bits carry information. The start bit, check bit, and stop bit are used to facilitate the transmission of the data bits to the destination device. In practical applications, you must set the data bits, parity check bits, and stop bits consistently.

In RTU mode, the transmission of a new frame always starts from an idle time (the transmission time of 3.5 bytes). On a network where the transmission rate is calculated based on the baud rate, the transmission time of 3.5 bytes can be easily obtained. After the idle time ends, the data domains are transmitted in the following sequence: slave address, operation command code, data, and CRC check character. Each byte transmitted in each domain includes 2 hexadecimal characters (0–9, A–F). The network devices always monitor the communication bus. After receiving the first domain (address information), each network device identifies the byte. After the last byte is transmitted, a similar transmission interval (the transmission time of 3.5 bytes) is used to indicate that the transmission of the frame ends. Then, the transmission of a new frame starts.

The information of a frame must be transmitted in a continuous data flow. If there is an interval greater than the transmission time of 1.5 bytes before the transmission of the entire frame is complete, the receiving device deletes the incomplete information, and mistakes the subsequent byte for the address domain of a new frame. Similarly, if the transmission interval between two frames is shorter than the transmission time of 3.5 bytes, the receiving device mistakes it for the data of the last frame. The CRC check value is incorrect due to the disorder of the frames, and thus a communication fault occurs.

The following table describes the standard structure of an RTU frame.

START (frame header)	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDD (slave address demain)	Communication address: 0–247 (decimal system) (0 is the
ADDR (slave address domain)	broadcast address)
CNAD (function domain)	03H: read slave parameters
CMD (function domain)	06H: write slave parameters
DATA (N-1)	
	Data of 2×N bytes, main content of the communication as well
DATA (0)	as the core of data exchanging
(data domain)	
CRC CHK LSB	Detection value CDC (46 hite)
CRC CHK MSB	Detection value: CRC (16 bits)
END (frame tail)	T1-T2-T3-T4 (transmission time of 3.5 bytes)

9.3.2.2 RTU communication frame error check modes

During the transmission of data, errors may occur due to various factors. Without check, the data receiving device cannot identify data errors and may make a wrong response. The wrong response may cause severe problems. Therefore, the data must be checked.

The check is implemented as follows: The transmitter calculates the to-be-transmitted data based on a specific algorithm to obtain a result, adds the result to the rear of the message, and transmits them together. After receiving the message, the receiver calculates the data based on the same algorithm to obtain a result, and compares the result with that transmitted by the transmitter. If the results are the same, the message is correct. Otherwise, the message is considered wrong.

The error check of a frame includes two parts, namely, bit check on individual bytes (that is, odd/even check using the check bit in the character frame), and whole data check (CRC check).

Bit check on individual bytes (odd/even check)

You can select the bit check mode as required, or you can choose not to perform the check, which will affect the check bit setting of each byte.

Definition of even check: Before the data is transmitted, an even check bit is added to indicate whether the number of "1" in the to-be-transmitted data is odd or even. If it is even, the check bit is set to "0"; and if it is odd, the check bit is set to "1".

Definition of odd check: Before the data is transmitted, an odd check bit is added to indicate whether the number of "1" in the to-be-transmitted data is odd or even. If it is odd, the check bit is set to "0"; and if it is even, the check bit is set to "1".

For example, the data bits to be transmitted are "11001110", including five "1". If the even check is applied, the even check bit is set to "1"; and if the odd check is applied, the odd check bit is set to "0". During the transmission of the data, the odd/even check bit is calculated and placed in the check bit of the frame. The receiving device performs the odd/even check after receiving the data. If it finds that the odd/even parity of the data is inconsistent with the preset information, it determines that a communication error occurs.

CRC check mode

A frame in the RTU format includes an error detection domain based on the CRC calculation. The CRC domain checks all the content of the frame. The CRC domain consists of two bytes, including 16 binary bits. It is calculated by the transmitter and added to the frame. The receiver calculates the CRC of the received frame, and compares the result with the value in the received CRC domain. If the two CRC values are not equal to each other, errors occur in the transmission.

During CRC, 0xFFFF is stored first, and then a process is invoked to process a minimum of 6 contiguous bytes in the frame based on the content in the current register. CRC is valid only for the 8-bit data in each character. It is invalid for the start, end, and check bits.

During the generation of the CRC values, the "exclusive or" (XOR) operation is performed on the each 8-bit character and the content in the register. The result is placed in the bits from the least significant bit (LSB) to the most significant bit (MSB), and 0 is placed in the MSB. Then, LSB is detected. If LSB is 1, the XOR operation is performed on the current value in the register and the preset value. If LSB is 0, no operation is performed. This process is repeated 8 times. After the last bit (8th bit) is detected and processed, the XOR operation is performed on the next 8-bit byte and the current content in the register. The final values in the register are the CRC values obtained after operations are performed on all the bytes in the frame.

The calculation adopts the international standard CRC check rule. You can refer to the related standard CRC algorithm to compile the CRC calculation program as required.

The following is a simple CRC calculation function for your reference (using the C programming language):

```
unsigned int crc_cal_value(unsigned char×data_value,unsigned char
data_length)
{
  int i;
  unsigned int crc value=0xffff;
```

```
while(data_length--)
{
    crc_value^=×data_value++;
    for(i=0;i<8;i++)
    {
        if(crc_value&0x0001)
            crc_value=(crc_value>>1)^0xa001;
        else
            crc_value=crc_value>>1;
    }
}
return(crc_value);
```

In the ladder logic, CKSM uses the table look-up method to calculate the CRC value according to the content in the frame. The program of this method is simple, and the calculation is fast, but the ROM space occupied is large. Use this program with caution in scenarios where there are space occupation limits on programs.

9.4 RTU command code and communication data

9.4.1 Command code: 03H, reading N words (continuously reading a maximum of 16 words)

The command code 03H is used by the master to read data from the VFD. The quantity of data to be read depends on the "data quantity" in the command. A maximum of 16 pieces of data can be read. The addresses of the read parameters must be contiguous. Each piece of data occupies 2 bytes, that is, one word. The command format is presented using the hexadecimal system (a number followed by "H" indicates a hexadecimal value). One hexadecimal value occupies one byte.

The 03H command is used to read information including the parameters and operation state of the VFD.

For example, starting from the data address of 0004H, to read two contiguous pieces of data (that is, to read content from the data addresses 0004H and 0005H), the structure of the frame is described in the following table.

RTU	master	command	(transmitted b	y the master	to the VFD)
-----	--------	---------	----------------	--------------	------------	---

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR (address)	01H
CMD (command code)	03H
Most significant byte (MSB)	0011
of the start address	00Н

Least significant byte (LSB) of the start address	04H
MSB of data quantity	00H
LSB of data quantity	02H
LSB of CRC	85H
MSB of CRC	CAH
END	T1-T2-T3-T4 (transmission time of 3.5 bytes)

The value in START and END is "T1-T2-T3-T4 (transmission time of 3.5 bytes)", indicating that the RS485 needs to stay idle for at least the transmission time of 3.5 bytes. An idle time is required to distinguish on message from another to ensure that the two messages are not regarded as one.

The value of ADDR is 01H, indicating that the command is transmitted to the VFD whose address is 01H. The ADDR information occupies one byte.

The value of CMD is 03H, indicating that the command is used to read data from the VFD. The CMD information occupies one byte.

"Start address" indicates that data reading is started from this address. It occupies two bytes, with the MSB on the left and LSB on the right.

"Data quantity" indicates the quantity of data to be read (unit: word).

The value of "Start address" is 0004H, and that of "Data quantity" is 0002H, indicating that data is to be read from the data addresses of 0004H and 0005H.

CRC check occupies two bytes, with the LSB on the left, and MSB on the right.

RTU slave response (transmitted by the VFD to the master)

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	01H
CMD	03H
Number of bytes	04H
MSB of data in 0004H	13H
LSB of data in 0004H	88H
MSB of data in 0005H	00H
LSB of data in 0005H	00H
LSB of CRC	7EH
MSB of CRC	9DH
END	T1-T2-T3-T4 (transmission time of 3.5 bytes)

The definition of the response information is described as follows:

The value of ADDR is 01H, indicating that the message is transmitted by the VFD whose address is 01H. The ADDR information occupies one byte.

The value of CMD is 03H, indicating that the message is a response of the VFD to the 03H command

of the master for reading data. The CMD information occupies one byte.

"Number of bytes" indicates the number of bytes between a byte (not included) and the CRC byte (not included). The value 04 indicates that there are four bytes of data between "Number of bytes" and "LSB of CRC", that is, "MSB of data in 0004H", "LSB of data in 0004H", "MSB of data in 0005H", and "LSB of data in 0005H".

A piece of data is two bytes, with the MSB on the left and LSB on the right. From the response, we can see that the data in 0004H is 1388H, and that in 0005H is 0000H.

CRC check occupies two bytes, with the LSB on the left, and MSB on the right.

9.4.2 Command code: 06H, writing a word

This command is used by the master to write data to the VFD. One command can be used to write only one piece of data. It is used to modify the parameters and operation mode of the VFD.

For example, to write 5000 (1388H) to 0004H of the VFD whose address is 02H, the structure of the frame is described in the following table.

RTU master command (transmitted by the master to the VFD)

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)	
ADDR	02H	
CMD	06H	
MSB of data writing address	00H	
LSB of data writing address	04H	
MSB of to-be-written data	13H	
LSB of to-be-written data	88H	
LSB of CRC	C5H	
MSB of CRC	6EH	
END	T1-T2-T3-T4 (transmission time of 3.5 bytes)	

RTU slave response (transmitted by the VFD to the master)

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	02H
CMD	06H
MSB of data writing address	00H
LSB of data writing address	04H
MSB of to-be-written data	13H
LSB of to-be-written data	88H
LSB of CRC	C5H
MSB of CRC	6EH
END	T1-T2-T3-T4 (transmission time of 3.5 bytes)

Note: Sections 9.4.1 and 9.4.2 mainly describe the command formats. For the detailed application, see the examples in section 9.4.7.

9.4.3 Command code: 10H, continuous writing

The command code 10H is used by the master to write data to the VFD. The quantity of data to be written is determined by "Data quantity", and a maximum of 16 pieces of data can be written.

For example, to write 5000 (1388H) and 50 (0032H) respectively to 0004H and 0005H of the VFD whose slave address is 02H, the structure of the frame is described in the following table.

RTU master command (transmitted by the master to the VFD)

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	02H
CMD	10H
MSB of data writing address	00H
LSB of data writing address	04H
MSB of data quantity	00H
LSB of data quantity	02H
Number of bytes	04H
MSB of data to be written to 0004H	13H
LSB of data to be written to 0004H	88H
MSB of data to be written to 0005H	00H
LSB of data to be written to 0005H	32H
LSB of CRC	C5H
MSB of CRC	6EH
END	T1-T2-T3-T4 (transmission time of 3.5 bytes)

RTU slave response (transmitted by the VFD to the master)

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	02H
CMD	10H
MSB of data writing address	00H
LSB of data writing address	04H
MSB of data quantity	00H
LSB of data quantity	02H
LSB of CRC	C5H
MSB of CRC	6EH
END	T1-T2-T3-T4 (transmission time of 3.5 bytes)

9.4.4 Data address definition

This section describes the address definition of communication data. The addresses are used for controlling the running, obtaining the state information, and setting related function parameters of the VFD.

9.4.4.1 Function code address representation rules

The address of a function code consists of two bytes, with the MSB on the left and LSB on the right.

The MSB ranges from 00 to ffH, and the LSB also ranges from 00 to ffH. The MSB is the hexadecimal form of the group number before the dot mark, and LSB is that of the number behind the dot mark. Take P05.06 as an example, the group number is 05, that is, the MSB of the parameter address is the hexadecimal form of 05; and the number behind the dot mark is 06, that is, the LSB is the hexadecimal form of 06. Therefore, the function code address is 0506H in the hexadecimal form. For P10.01, the parameter address is 0A01H.

Function code	Name	Detailed parameter description	Setting range	Default value	Modify
P10.00	Simple PLC mode	0: Stop after running once 1: Keep running in the final value after running once 2: Cyclic running	0-2	0	0
P10.01	Simple PLC memory selection	0: No memory after power down 1: Memory after power down	0-1	0	0

Note:

- The parameters in the P99 group are set by the manufacturer. They cannot be read or modified.
 Some parameters cannot be modified when the VFD is running; some cannot be modified regardless of the state of the VFD. Pay attention to the setting range, unit, and related description of a parameter when modifying it.
- 2. The service life of the Electrically Erasable Programmable Read-Only Memory (EEPROM) may be reduced if it is frequently used for storage. Some function codes do not need to be stored during communication. The application requirements can be met by modifying the value of the on-chip RAM, that is, modifying the MSB of the corresponding function code address from 0 to 1. For example, if P00.07 is not to be stored in the EEPROM, you need only to modify the value of the RAM, that is, set the address to 8007H. The address can be used only for writing data to the on-chip RAM, and it is invalid when used for reading data.

9.4.4.2 Description of other function code addresses

In addition to modifying the parameters of the VFD, the master can also control the VFD, such as start and stop it, and monitor the operation state of the VFD. The following table describes other function parameters.

Function	Address	Data description	R/W
		0001H: Forward running	
		0002H: Reverse running	
Communication-		0003H: Forward jogging	
based control	2000H	0004H: Reverse jogging	R/W
command		0005H: Stop	
		0006H: Coast to stop	
		0007H: Fault reset	

Function	Address	Data description		
		0008H: Jogging to stop		
	2001H	Communication-based frequency setting (0–Fmax, unit: 0.01 Hz)	R/W	
	2002H	PID setting, range (0-1000, 1000 corresponding to 100.0%)		
	2003H	PID feedback, range (0–1000, 1000 corresponding to 100.0%)	R/W	
	2004H	Torque setting (-3000-+3000, 1000 corresponding to 100.0% of the rated current of the motor)	R/W	
	2005H	Setting of the upper limit of the forward running frequency (0–Fmax, unit: 0.01 Hz)	R/W	
	2006H	Setting of the upper limit of the reverse running frequency (0–Fmax, unit: 0.01 Hz)	R/W	
	2007H	Upper limit of the electromotive torque (0-3000, 1000 corresponding to 100.0% of the rated current of the VFD)	R/W	
	2008H	Upper limit of the braking torque (0–3000, 1000 corresponding to 100.0% of the rated current of the motor)	R/W	
Communication- based value setting	2009H	Special control command word: Bit1-0 =00: Motor 1 =01: Motor 2 =10: Motor 3 =11: Motor 4 Bit2: =1 Torque control disabled =0: Torque control cannot be disabled Bit3: =1 Power consumption reset to 0 =0: Power consumption not reset Bit4: =1 Pre-excitation =0: Pre-excitation disabled Bit5: =1 DC braking =0: DC braking disabled	R/W	
	200AH	Virtual input terminal command, range: 0x000–0x3FF Corresponding to S8/S7/S6/S5/HDIB/HDIA/S4/S3/S2/S1	R/W	
	200BH	Virtual output terminal command, range: 0x00–0x0F Corresponding to the local RO2/RO1/HDO/Y1	R/W	
	200CH	Voltage setting (used when V/F separation is implemented)		
	200DH	AO output setting 1 (-1000-+1000, 1000 corresponding to 100.0%)	R/W	

Function	Address	Data description	R/W
	200EH	AO output setting 2 (-1000-+1000, 1000 corresponding	R/W
	ZOOLIT	to 100.0%)	10,00
		0001H: Forward running	
		0002H: Reverse running	
VFD status	2100H	0003H: Stopped	R
word 1	210011	0004H: Faulty	, '`
		0005H: POFF	
		0006H: Pre-excited	
		Bit0: =0: Not ready to run =1: Ready to run	
		Bit2-1: =00: Motor 1 =01: Motor 2	
		=10: Motor 3 =11: Motor 4	
		Bit3: =0: Asynchronous machine =1: Synchronous	
		machine	
		Bit4: =0: No overload alarm =1: Overload alarm	
VFD status	2101H	Bit6-5: =00: Keypad-based control =01: Terminal-	R
word 2	210111	based control	1
		=10: Communication-based control	
		Bit7: Reserved	
		Bit8: =0: Speed control =1: Torque control	
		Bit9: =0: Non-position control =1: Position control	
		Bit11-10: =0: Vector 0 =1: Vector 1 =2: Closed-loop	
		vector =3: Space voltage vector	
VFD fault code	2102H	See the description of fault types.	R
Running frequency	3000H	0–Fmax (unit: 0.01Hz)	R
Set frequency	3001H	0-Fmax (unit: 0.01Hz)	R
Bus voltage	3002H	0.0–2000.0 V (unit: 0.1V)	R
Output voltage	3003H	0–1200V (unit: 1V)	R
Output current	3004H	0.0–3000.0A (unit: 0.1A)	R
Rotating speed	3005H	0-65535 (unit: 1 rpm)	R
Output power	3006H	-300.0-+300.0% (unit: 0.1%)	R
Output torque	3007H	-250.0-+250.0% (unit: 0.1%)	R
Closed-loop	3008H	100.0 ±100.0% (upit: 0.1%)	R
setting	300811	-100.0—+100.0% (unit: 0.1%)	K
Closed-loop	200011	100 0 +100 09/ (tupite 0.19/)	
feedback	3009H	-100.0—+100.0% (unit: 0.1%)	R
		0x00-0x3F]
Input state	300AH	Corresponding to the local	R
		HDIB/HDIA/S4/S3/S2/S1	

Function	Address	Data description	R/W
Output state	300BH	0x00–0x0F Corresponding to the local RO2/RO1/HDO/Y1	R
Analog input 1	300CH	0.00-10.00V (unit: 0.01V)	R
Analog input 2	300DH	0.00-10.00V (unit: 0.01V)	R
Analog input 3	300EH	-10.00–10.00V (unit: 0.01V)	R
Analog input 4	300FH		R
Read input of high-speed pulse 1	3010H	0.00–50.00kHz (unit: 0.01Hz)	R
Read input of high-speed pulse 2	3011H		R
Read current step of multi- step speed	3012H	0–15	R
External length	3013H	0–65535	R
External count value	3014H	0–65535	R
Torque setting	3015H	-300.0-+300.0% (unit: 0.1%)	R
Identification code	3016H		R
Fault code	5000H		R

The Read/Write (R/W) characteristics indicate whether a function can be read and written. For example, "Communication-based control command" can be written, and therefore the command code 6H is used to control the VFD. The R characteristic indicates that a function can only be read, and W indicates that a function can only be written.

Note: Some parameters in the preceding table are valid only after they are enabled. Take the running and stop operations as examples, you need to set "Running command channel" (P00.01) to "Communication", and set "Communication running command channel" (P00.02) to the Modbus communication channel. For another example, when modifying "PID setting", you need to set "PID reference source" (P09.00) to Modbus communication.

9.4.5 Fieldbus scale

In practical applications, communication data is represented in the hexadecimal form, but hexadecimal values cannot represent decimals. For example, 50.12 Hz cannot be represented in the hexadecimal form. In such cases, we can multiply 50.12 by 100 to obtain an integer 5012, and then 50.12 can be represented as 1394H (5012 in the decimal form) in the hexadecimal form.

In the process of multiplying a non-integer by a multiple to obtain an integer, the multiple is referred to

as a fieldbus scale.

The fieldbus scale depends on the number of decimals in the value specified in "Detailed parameter description" or "Default value". If there are n decimals in the value, the fieldbus scale m is the nth-power of 10. Take the following table as an example, m is 10.

Function code	Name	Detailed parameter description	Default value
P01.20	Wake-up-from-sleep delay	0.0–3600.0s (valid when the ones place of P01.19 is 2)	0.0s
P01.21	Restart after power down	Restart is disabled Restart is enabled	0

The value specified in "Detailed parameter description" or "Default value" contains one decimal, so the fieldbus scale is 10. If the value received by the upper computer is 50, the value of "Wake-up-from-sleep delay" of the VFD is 5.0 (5.0=50/10).

To set the "Wake-up-from-sleep delay" to 5.0s through Modbus communication, you need first to multiply 5.0 by 10 according to the scale to obtain an integer 50, that is, 32H in the hexadecimal form, and then transmit the following write command:

<u>01</u>	<u>06</u>	<u>01 14</u>	<u>00 32</u>	<u>49 E7</u>
VFD address	Write command	Parameter address	Parameter data	CRC

After receiving the command, the VFD converts 50 into 5.0 based on the fieldbus scale, and then sets "Wake-up-from-sleep delay" to 5.0s.

For another example, after the upper computer transmits the "Wake-up-from-sleep delay" parameter read command, the master receives the following response from the VFD:

<u>01</u>	<u>03</u>	<u>02</u>	<u>00 32</u>	<u>39 91</u>
VFD	Read	2-byte	Parameter	CRC
address	command	data	data	

The parameter data is 0032H, that is, 50, so 5.0 is obtained based on the fieldbus scale (50/10=5.0). In this case, the master identifies that the "Wake-up-from-sleep delay" is 5.0s.

9.4.6 Error message response

Operation errors may occur in communication-based control. For example, some parameters can only be read, but a write command is transmitted. In this case, the VFD returns an error message response.

Error message responses are transmitted by the VFD to the master. The following table describes the codes and definitions of the error message responses.

Code	Name	Definition
01H	Invalid	The command code received by the upper computer is not allowed

Code	Name	Definition
	command	to be executed. The possible causes are as follows:
		• The function code is applicable only on new devices and is not
		implemented on this device.
		The slave is in the faulty state when processing this request.
02H	Invalid data address	For the VFD, the data address in the request of the upper computer is not allowed. In particular, the combination of the register address and the number of the to-be-transmitted bytes is invalid.
		The received data domain contains a value that is not allowed. The
03H	Invalid data bit	value indicates the error of the remaining structure in the combined request.
		Note: It does not mean that the data item submitted for storage in
		the register includes a value unexpected by the program.
04H	Operation	The parameter is set to an invalid value in the write operation. For
	failure	example, a function input terminal cannot be set repeatedly.
05H	Password error	The password entered in the password verification address is different from that set in P07.00.
06H	Data frame error	The length of the data frame transmitted by the upper computer is incorrect, or in the RTU format, the value of the CRC check bit is inconsistent with the CRC value calculated by the lower computer
07H	Parameter read-only	The parameter to be modified in the write operation of the upper computer is a read-only parameter.
	Parameter	
08H	cannot be	The parameter to be modified in the write operation of the upper
0011	modified in running	computer cannot be modified during the running of the VFD.
09H	Password protection	A user password is set, and the upper computer does not provide the password to unlock the system when performing a read or write operation. The error of "system locked" is reported.

When returning a response, the device uses a function code domain and fault address to indicate whether it is a normal response (no error) or exception response (some errors occur). In a normal response, the device returns the corresponding function code and data address or sub-function code. In an exception response, the device returns a code that is equal to a normal code, but the first bit is logic 1.

For example, if the master device transmits a request message to a slave device for reading a group of function code address data, the code is generated as follows:

0 0 0 0 0 1 1 (03H in the hexadecimal form)

For a normal response, the same code is returned.

For an exception response, the following code is returned:

1 0 0 0 0 0 1 1 (83H in the hexadecimal form)

In addition to the modification of the code, the slave returns a byte of exception code that describes the cause of the exception. After receiving the exception response, the typical processing of the master device is to transmit the request message again or modify the command based on the fault information.

For example, to set the "Running command channel" (P00.01, the parameter address is 0001H) of the VFD whose address is 01H to 03, the command is as follows:

<u>01</u>	<u>06</u>	<u>00 01</u>	<u>00 03</u>	<u>98 0B</u>
VFD address	Write command	Parameter address	Parameter data	CRC

But the setting range of the "Running command channel" is 0 to 2. The value 3 exceeds the setting range. In this case, the VFD returns an error message response as shown in the following:

<u>01</u>	<u>86</u>	<u>04</u>	<u>43 A3</u>
VFD	Exception	Error code	CRC
address	response code		

The exception response code 86H (generated based on the MSB "1" of the write command 06H) indicates that it is an exception response to the write command (06H). The error code is 04H. From the preceding table, we can see that it indicates the error "Operation failure", which means "The parameter is set to an invalid value in the write operation".

9.4.7 Read/Write operation example

For the formats of the read and write commands, see sections 9.4.1 and 9.4.2.

9.4.7.1 Read command 03H examples

Example 1: Read status word 1 of the VFD whose address is 01H. From the table of other function parameters, the parameter address of status word 1 of the VFD is 2100H.

The read command transmitted to the VFD is as follows:

<u>01</u>	<u>03</u>	<u>21 00</u>	<u>00 01</u>	<u>8E 36</u>
VFD address	Read command	Parameter address	Data quantity	CRC

Assume that the following response is returned:

<u>01</u>	<u>03</u>	<u>02</u>	<u>00 03</u>	<u>F8 45</u>
VFD address	Read command	Number of bytes	Data content	CRC

The data content returned by the VFD is 0003H, which indicates that the VFD is in the stopped state.

Example 2: View information about the VFD whose address is 03H, including "Type of present fault"

(P07.27) to "Type of the 5th-last fault" (P07.32) of which the parameter addresses are 071BH to 0720H (contiguous 6 parameter addresses starting from 071BH).

The command transmitted to the VFD is as follows:

<u>03</u>	<u>03</u>	<u>07 1B</u>	<u>00 06</u>	<u>B5 59</u>
VFD address	Read command	Start address	6 parameters in total	CRC

Assume that the following response is returned:

03 (3 OC	00 23	00 23	00 23	00 23	00 23	00 23	5F D2
	tead Number o	f Type of current fault	Type of last fault	Type of last but one fault	Type of last but two fault	Type of last but three fault	Type of last but four fault	CRC

From the returned data, all the fault types are 0023H, that is, 35 in the decimal form, which means the maladjustment fault (STo).

9.4.7.2 Write command 06H examples

Example 1: Set the VFD whose address is 03H to be forward running. According to the table in 9.4.4.2 Description of other function code addresses, the address of "Communication-based control command" is 2000H, and 0001H indicates forward running, as shown in the following figure.

Function	Address	Data description	R/W
		0001H: Forward running	
		0002H: Reverse running	
Communication-based control command		0003H: Forward jogging	
	2000H	0004H: Reverse jogging	D.44
		0005H: Stop	R/W
		0006H: Coast to stop	
		0007H: Fault reset	
		0008H: Jogging to stop	

The command transmitted by the master is as follows:

<u>03</u>	<u>06</u>	<u>20 00</u>	<u>00 01</u>	<u>42 28</u>
VFD address	Write command	Parameter address	Forward running	CRC

If the operation is successful, the following response is returned (same as the command transmitted by the master):

<u>03</u>	<u>06</u>	<u>20 00</u>	<u>00 01</u>	<u>42 28</u>
VFD address	Write command	Parameter address	Forward running	CRC

Example 2: Set the "Max. output frequency" of the VFD whose address is 03H to 100 Hz.

Function code	Name	Detailed parameter description	Default value	Modify
P00.03	Max. output frequency	Used to set the maximum output frequency of the VFD. It is the basis of frequency setting and the acceleration/deceleration. Setting range: Max(P00.04, 10.00) – 630.00Hz		0

From the number of decimals, the fieldbus scale of the "Max. output frequency" (P00.03) is 100. Multiply 100 Hz by 100. The value 10000 is obtained, and it is 2710H in the hexadecimal form.

The command transmitted by the master is as follows:

<u>03</u>	<u>06</u>	<u>00 03</u>	<u>27 10</u>	<u>62 14</u>
VFD	Write	Parameter	Parameter	CRC
address	command	address	data	

If the operation is successful, the following response is returned (same as the command transmitted by the master):

<u>03</u>	<u>06</u>	<u>00 03</u>	<u>27 10</u>	<u>62 14</u>
VFD address	Write command	Parameter address	Parameter data	CRC

Note: In the preceding command description, spaces are added to a command just for explanatory purposes. In practical applications, no space is required in the commands.

9.4.7.3 Continuously write command 10H examples

Example 1: Set the VFD whose address is 01H to be forward running at the frequency of 10 Hz. Refer to the table of other function parameters, the address of "Communication-based control command" is 2000H, 0001H indicates forward running, and the address of "Communication-based value setting" is 2001H, as shown in the following figure. 10 Hz is 03E8H in the hexadecimal form.

Function	Address	Data description	R/W
		0001H: Forward running	
		0002H: Reverse running	
		0003H: Forward jogging	R/W
Communication-	000011	0004H: Reverse jogging	
based control	2000H	0005H: Stop	
command		0006H: Coast to stop	
		0007H: Fault reset	
		0008H: Jogging to stop	
Communication-	2001H	Communication-based frequency setting (0–Fmax, unit: 0.01 Hz)	DAM
based value setting	2002H	PID setting, range (0-1000, 1000 corresponding to 100.0%)	R/W

In the actual operation, set P00.01 to 2 and P00.06 to 8.

The command transmitted by the master is as follows:

<u>01</u>	<u>10</u>	<u>20 00</u>	<u>00 02</u>	_04_	<u>00 01</u>	<u>03 E8</u>	<u>3B 10</u>
VFD address	write	Parameter address	Parameter quantity	Number of bytes	Froward running	10 Hz	CRC
	command						

If the operation is successful, the following response is returned:

<u>01</u>	<u>10</u>	<u>20 00</u>	<u>00 02</u>	<u>4A 08</u>
VFD address	Continuous write	Parameter address	Parameter quantity	CRC
	command			

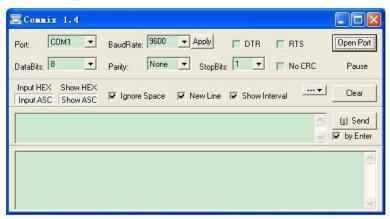
Example 2: Set "Acceleration time" of the VFD whose address is 01H to 10s, and "Deceleration time" to 20s.

Function code	Name	Detailed parameter description	Default value	Modify
P00.11	Acceleration time 1	Acceleration time is the time needed for accelerating from 0Hz to Max. output frequency (P00.03). Deceleration time is the time needed	Depends on model	0
P00.12	Deceleration time 1	from decelerating from Max. output frequency (P00.03) to 0Hz. UMI-B7 series VFD defines four groups of acceleration and deceleration time, which can be selected via multifunction digital input terminals (P05 group). The acceleration/deceleration time of the VFD is the first group by default. Setting range of P00.11 and P00.12: 0.0–3600.0s		0

The address of P00.11 is 000B, 10s is 0064H in the hexadecimal form, and 20s is 00C8H in the hexadecimal form.

The command transmitted by the master is as follows:

<u>01</u>	<u>10</u>	<u>00 0B</u>	<u>00 02</u>	<u>04</u>	<u>00 64</u>	<u>00 C8</u>	<u>F2 55</u>
VFD address		Parameter address	Parameter quantity	Number of bytes	10s	20s	CRC


If the operation is successful, the following response is returned:

<u>01</u>	<u>10</u>	<u>00 0B</u>	<u>00 02</u>	<u>30 0A</u>
VFD addres	00	Parameter address	Parameter quantity	CRC

Note: In the preceding command description, spaces are added to a command just for explanatory purposes. In practical applications, no space is required in the commands.

9.4.7.4 Modbus communication commissioning example

A PC is used as the host, an RS232-RS485 converter is used for signal conversion, and the PC serial port used by the converter is COM1 (an RS232 port). The upper computer commissioning software is the serial port commissioning assistant Commix, which can be downloaded from the Internet. Download a version that can automatically execute the CRC check function. The following figure shows the interface of Commix.

First, set the serial port to **COM1**. Then, set the baud rate consistently with P14.01. The data bits, check bits, and stop bits must be set consistently with P14.02. If the RTU mode is selected, you need to select the hexadecimal form **Input HEX**. To set the software to automatically execute the CRC function, you need to select **ModbusRTU**, select **CRC16 (MODBU SRTU)**, and set the start byte to **1**. After the auto CRC check function is enabled, do not enter CRC information in commands. Otherwise, command errors may occur due to repeated CRC check.

The commissioning command to set the VFD whose address is 03H to be forward running is as follows:

<u>03</u>	<u>06</u>	<u>20 00</u>	<u>00 01</u>	<u>42 28</u>
VFD address	Write command	Parameter address	Forward running	CRC

Note:

- 1. Set the address (P14.00) of the VFD to 03.
- 2. Set "Channel of running commands" (P00.01) to "Communication", and set "Communication channel of running commands" (P00.02) to the Modbus communication channel.
- Click Send. If the line configuration and settings are correct, a response transmitted by the VFD is received as follows:

 03
 06
 20 00
 00 01
 42 28

 VFD address address address
 Write command command command address
 Parameter address
 Forward running command command command address
 CRC

9.5 Common communication faults

Common communication faults include the following:

- No response is returned.
- The VFD returns an exception response.

Possible causes of no response include the following:

- The serial port is set incorrectly. For example, the converter uses the serial port COM1, but COM2 is selected for the communication.
- The settings of the baud rates, data bits, stop bits, and check bits are inconsistent with those set on the VFD.
- The positive pole (+) and negative pole (-) of the RS485 bus are connected reversely.
- The resistor connected to 485 terminals on the terminal block of the VFD is set incorrectly.

Appendix A Expansion cards

A.1 Dimensions and installation

All expansion cards are of the same dimensions (108 mm × 39 mm) and can be installed in the same way.

Comply with the following operation principles when installing or removing an expansion card:

- 1. Ensure that no power is applied before installing an expansion card.
- 2. An expansion card can be installed into a respective card slots among SLOT1, SLOT2, and SLOT3.
- 3. VFDs of 5.5 kW or lower can be configured with two expansion cards at the same time, and those of 7.5 kW or higher can be configured with three expansion cards.
- 4. If interference occurs on the external wires after expansion cards are installed, change their installation card slots flexibly to facilitate the wiring.
- 5. To ensure high anti-interference capability in closed-loop control, you need to use a shielded cable as the encoder cable and ground the two ends of the cable. That is, connect the motor side shield layer to the motor housing, and connect the PG card side shield layer to the PE terminal.

Note: For 2.2–5.5kW models, the 24V power supply card can be inserted into SLOT1; for 7.5kW and higher models, the 24V power supply card can be inserted into SLOT1 or SLOT3; for 11kW and higher models, the 24V power supply card can be inserted into any of the three slots.

Figure A-1 shows the installation diagram and a VFD with expansion cards installed.

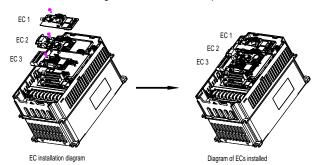


Figure A-1 VFD of 7.5 kW or higher with expansion cards installed

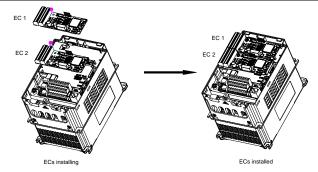


Figure A-2 VFD of 5.5 kW or lower with expansion cards installed Expansion card installation process:

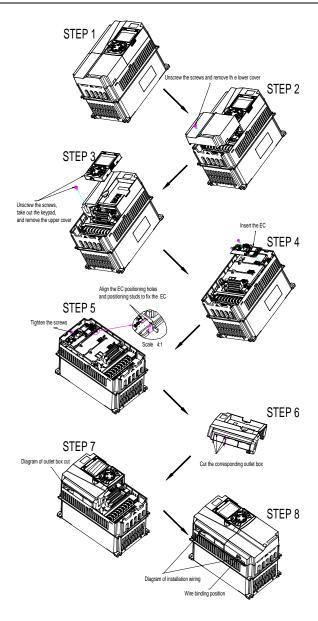


Figure A-3 Expansion card installation process diagram

A.2 Wiring

1. Ground a shielded cable as follows:

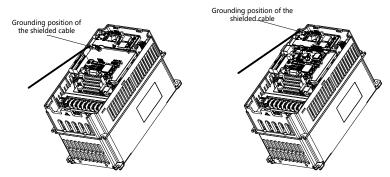


Figure A-4 Expansion card grounding diagram

2. Wire an expansion card as follows:

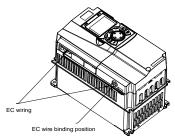
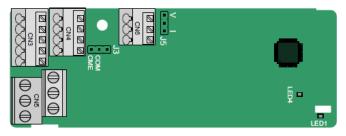



Figure A-5 Expansion card wiring

A.3 IO cards

A.3.1 IO Card (UMI-S0170)

CME and COM are shorted through J3 before delivery, and J5 is the jumper for selecting the output type (voltage or current) of AO2.

The terminals are arranged as follows:

AI3 AO2 GND

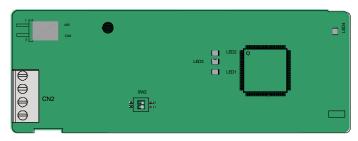
COM	CME	Y2	S5	
PW	+24V	S6	S7	S8

RO3A	4	ROS	3B	RC)3C	
	RO4A				RO	4C

Indicator definition

Indicator	Name	Description	
		On: The expansion card is establishing a	
		connection with the control board.	
	State indicator	Blinking periodically: The expansion card is	
LEDA		properly connected to the control board (the	
LED1		period is 1s, on for 0.5s, and off for the other	
		0.5s).	
		Off: The expansion card is disconnected	
		from the control board.	
LEDA	Danier in dia atau	On: The control board feeds power to the	
LED4	Power indicator	expansion card.	

The UMI-S0170 expansion card can be used in scenarios where the I/O interfaces of a UMI-B7 VFD cannot meet the application requirements. It can provide 4 digital inputs, 1 digital output, 1 analog input, 1 analog output, and 2 relay outputs. It is user-friendly, providing relay outputs through European-type screw terminals and other inputs and outputs through spring terminals.


UMI-S0170 terminal function description

Category	Symbol	Name	Description
			The working power of digital input is provided
		Futamal navvan	by an external power supply.
Power	PW	External power	Voltage range: 12–30 V
		supply	The terminals PW and +24V are shorted
			before delivery.
			1. Input range: 0–10 V, 0–20 mA
		Analog input 1	2. Input impedance: 20 kΩ for voltage input;
	AI3—		250 Ω for current input
			3. Set it to be voltage or current input through
	GND		the corresponding function code.
	GND		4. Resolution: When 10 V corresponds to 50
Analog	t		Hz, the minimum resolution is 5 mV.
input/output			5. Deviation: ±0.5%; input of 5 V or 10 mA or
			higher at the temperature of 25°C
			1. Output range: 0–10 V, 0–20 mA
	AO2—		2. Whether it is voltage or current output is
	GND	Analog output 1	determined by J5.
	GND		3. Deviation ±0.5%; output of 5 V or 10 mA or
			higher at the temperature of 25°C

Category	Symbol	Name	Description
	S5—COM	Digital input 1	1. Internal impedance: 3.3 kΩ
	S6—COM	Digital input 2	2. Power input range: 12–30 V
	S7—COM	Digital input 3	Bidirectional input terminal
Digital	S8—COM	Digital input 4	4. Max. input frequency: 1 kHz
input/output			1. Switch capacity: 50 mA/30 V
	V2 CME	Digital output	2. Output frequency range: 0–1 kHz
	Y2—CME	Digital output	3. The terminals CME and COM are shorted
			through J3 before delivery.
	RO3A	NO contact of	
	KUSA	relay 3	
	RO3B	NC contact of	
		relay 3	1. Contact capacity: 3A/AC 250 V, 1A/DC 30
Relay	RO3C	Common contact	V
output		of relay 3	2. Do not use them as high-frequency digital
	RO4A	NO contact of	outputs.
	KO4A	relay 4	
	RO4C	Common contact	
	KU4C	of relay 4	

A.4 Communication cards

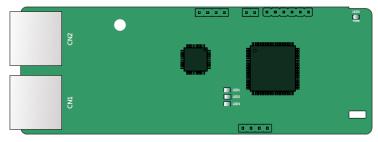
A.4.1 CANopen communication card (UMI-S0006)

The UMI-S0006 communication card is user-friendly, adopting spring terminals.

Symbol	Description			
PGND	Isolation ground	Isolation ground		
PE	Shielded	CAN bus shielding		
CANH	CANopen bus high level signal	CAN bus high level signal		
CANL	CANopen bus low level signal	CAN bus low level signal		
CAN	CAN terminal resistor switch	ON: A terminal resistor of 120 Ω is connected between CAN_H and CAN_L are connected to a terminal resistor of 120 Ω .		
		OFF: No terminal resistor is connected between CAN_H and CAN_L.		

Note: Before power-on, please select the protocol type by setting the switch SW2 as follows:

Switch SW2				
1	2	Protocol type		
OFF	OFF	CANopen		
ON	OFF	CAN master/slave		


Indicator definition

Indicator No.	Definition	Function
		On: The expansion card is establishing a connection with the control board. Blinking periodically: The expansion card is
LED1	State indicator	properly connected to the control board (the period is 1s, on for 0.5s, and off for the other 0.5s).
		Off: The expansion card is disconnected from the control board.
LED2	Running indicator	On: The communication card is running. Off: A fault occurs. Check whether the reset pin

Indicator No.	Definition	Function
		of the communication card and the power
		supply are properly connected.
		Blinks: The communication card is in the pre-
		operation state.
		Blinks once: The communication card is in the
		stopped state.
		On: The CAN controller bus is off or a fault
	Error indicator	occurs on the VFD.
LED3		Off: The communication card is in the working
		state.
LED4	Power indicator	On: The control board feeds power to the
LED4	Fower indicator	communication card.

For details about the operation, see the Communication Card Operation Manual.

A.4.2 Ethernet/IP communication card (UMI-S0007) and Modbus TCP communication card (UMI-S0009)

The terminal CN2 adopts standard dual RJ45 interfaces, and the two RJ45 interfaces are not distinguished from each other and can be interchangeably inserted.

Figure A-6 Standard RJ45 interface

Standard RJ45 interface functions

Pin	Name	Description
1	TX+	Transmit Data+
2	TX-	Transmit Data-
3	RX+	Receive Data+
4	n/c	Not connected
5	n/c	Not connected

Pin	Name	Description
6	RX-	Receive Data-
7	n/c	Not connected
8	n/c	Not connected

State indicators

The communication card provides four LED indicators and four net port indicators to indicate its states.

LED	Color	State	Description			
		On	The card is shaking hands with the VFD.			
LED1	Green	Blinking (1Hz)	The card and VFD communicate normally.			
		Off	The card and VFD communicate improperly.			
		On	The communication between the card and PLC is			
		Oli	online and data interchange is allowed.			
LED2	Green	Blinking (1Hz)	IP address conflict between the card and PLC.			
		Off	The communication between the card and PLC is offline.			
		On	Failed to set up I/O between the card and PLC.			
		Blinking (1Hz)	Incorrect PLC configuration.			
LFD3	Red	Blinking (2Hz)	The card failed to send data to the PLC.			
LEDS		Blinking (4Hz)	The connection between the card and PLC timed			
			out.			
		Off	No fault.			
LED4	Red	On	3.3V power indicator.			
		On	Link indicator, indicating successful Ethernet			
Net port	Yellow	OII	connection.			
indicator	reliow	Off	Link indicator, indicating Ethernet connection not			
		Oii	established.			
		On	ACK indicator, indicating data interchange being			
Net port	Green	011	performed.			
indicator	Gicen	Off	ACK indicator, indicating data interchange not be			
		0"	performed.			

Electrical wiring

The communication card provides standard RJ45 ports and supports the linear, star, and ring topologies. The following three figures show the electrical wiring methods.

Use CAT5, CAT5e, and CAT6 network cables for electrical wiring. When the communication distance is greater than 50 meters, use high-quality network cables that meet the high-quality standards.

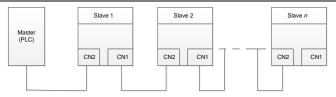


Figure A-7 Electrical wiring for a linear topology

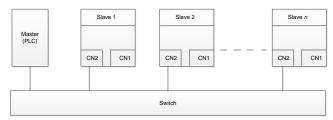


Figure A-8 Electrical wiring for a star topology

Note: Ethernet switches must be available when the star topology is used.

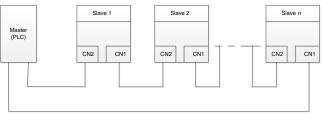
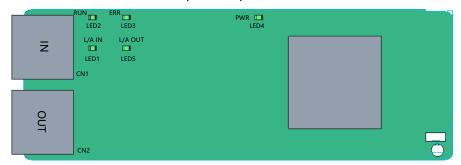



Figure A-9 Electrical wiring for a ring network

A.4.3 EtherCAT communication card (UMI-S0008)

Standard RJ45 ports are used in EtherCAT communication. The communication card provides two RJ45 ports with transmission direction defined. Figure A-10 shows the ports. IN (indicating input) and OUT (indicating output) are EtherCAT wiring network ports. Table A-1 describes the port pins.

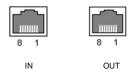


Figure A-10 RJ45 ports

State indicators

The EtherCAT communication card provides five LED indicators and four net port indicators to indicate its states. Figure A-11 shows the state indicator positions. Table A-1 describes the state indicators.

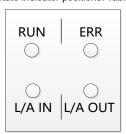


Figure A-11 State indicator positions

Table A-1 State indicators

Item	Color	Function description	
RUN	Green	The green indicator indicates EtherCAT running state. Init state: It remains off. Pre-OP state: It blinks off 0.2s and on 0.2s (Blinking). Safe-OP state: It flashes off 1s and on 0.2s (Single flash). OP state: It remains on.	
ERR	Red	The red indicator indicates EtherCAT fault state. No fault: It remains off. Init or Pre-OP state: It blinks off 0.2s and on 0.2s (Blinking). Safe-OP fault state: It flashes off 1s and on 0.2s (Single flash). OP state: It remains on. Process data watchdog timeout: (Double flash).	
L/A IN	Green	Off: Without connection. On: With connection but inactive. Flickers: With connection and active (Flickering).	
L/A OUT	Green	Off: Without connection. On: With connection but inactive. Flickers: With connection and active (Flickering).	
PWR	Red	3.3V power indicator	
Net port	Yellow	Off: Indicates that Ethernet connection is not established. On: Indicates that Ethernet connection is established successfully.	
indicator (IN)	Green	Off: Without connection On: With connection but inactive Blinks: With connection and active	
Net port indicator	Yellow	Off: Indicates that Ethernet connection is not established. On: Indicates that Ethernet connection is established successfully.	
(OUT)	Green	Off: Without connection.	

Item	Color	Function description	
		On: With connection but inactive.	
		Blinks: With connection and active.	

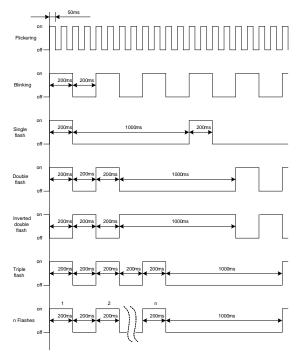


Figure A-12 Indicator flashing/blinking/flickering frequency

Electrical wiring

The EtherCAT network usually consists of a master station (PLC) and several slave stations (drives or bus extension terminals). Each EtherCAT slave station is configured with two standard Ethernet interfaces, and the electrical wiring diagram is shown in Figure A-13. The network also supports the star topology, which requires professional switches.

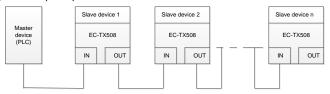
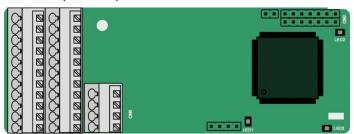



Figure A-13 Electrical wiring diagram for a linear topology

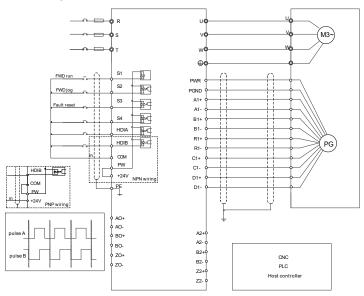
A.5 PG cards

A.5.1 Sin/Cos PG card (UMI-S0014)

The terminals are arranged as follows:

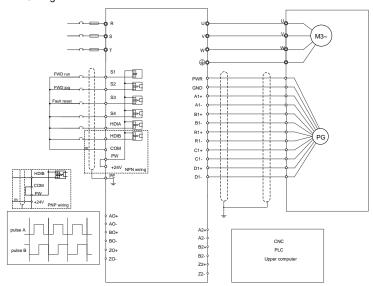
							C1+	C1-	D1+	D1-
PE	AO+	BO+	ZO+	A1+	B1+	R1+	A2+	B2+	Z2+	PWR
GND	AO-	ВО-	ZO-	A1-	B1-	R1-	A2-	B2-	Z2-	GND

Indicator definition

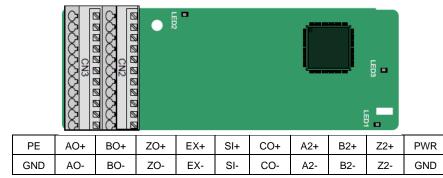

Indicator	Name	Description	
	Disconnection	Off: A1 and B1 of the encoder are disconnected.	
LED1	indicator	Blinking: C1 and D1 of the encoder are disconnected.	
	indicator	On: The encoder signals are normal.	
LED2	Power	On. The control board feeds nevents the DC cond	
LED2	indicator	On: The control board feeds power to the PG card.	
	State indicator	On: The expansion card is establishing a connection with the	
		control board.	
		Blinking periodically: The expansion card is properly	
LED3		connected to the control board (the period is 1s, on for 0.5s,	
		and off for the other 0.5s).	
		Off: The expansion card is disconnected from the control	
		board.	

UMI-S0014 terminal function description

Signal	Port	Function
PWR	Fd	Voltage: 5 V ± 5%
GND	Encoder power	Max. output current: 150 mA
A1+	Encoder interface	1. Supporting Sin/Cos encoders
A1-		2. SINA/SINB/SINC/SIND 0.6-1.2Vpp; SINR 0.2-
B1+		0.85Vpp
B1-		3. Max. frequency response of A/B signals: 200 kHz
R1+		Max. frequency response of C/D signals: 1 kHz


Signal	Port	Function
R1-		
C1+		
C1-		
D1+		
D1-		
A2+		
A2-		
B2+	Dula a mafanana	1. Supporting 5V differential signal
B2-	Pulse reference	2. Frequency response: 200 kHz
Z2+		
Z2-		
AO+		
AO-		1. Differential output of 5 V
BO+	Frequency-divided	2. Supporting frequency division of 2 ^N , which can be
BO-	output	set through P20.16 or P24.16; Max. output
ZO+		frequency: 200 kHz
ZO-		

The following figure shows the external wiring of the PG card when it is used in combination with an encoder without CD signals.



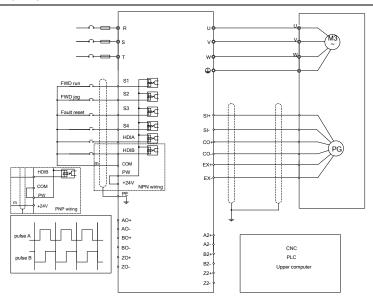
The following figure shows the external wiring of the PG card when it is used in combination with an -353-

encoder with CD signals.

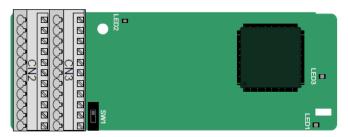
A.5.2 Resolver PG card (UMI-S0013)

Indicator definition

Indicator	Name	Description
LED1	State indicator	On: The expansion card is establishing a connection with the control board. Blinking periodically: The expansion card is properly connected to the control board (the period is 1s, on for 0.5s, and off for the other 0.5s). Off: The expansion card is disconnected from the control board.


Indicator	Name	Description		
		Off: The encoder is disconnected.		
LED2	Disconnection indicator	On: The encoder signals are normal.		
		Blinks: The encoder signals are not stable.		
1.500	D	On: The control board feeds power to the PG		
LED3	Power indicator	card.		

The UMI-S0013 expansion card can be used in combination with a resolver of excitation voltage 7 Vrms. It is user-friendly, adopting spring terminals.


UMI-S0013 terminal function description

Signal	Port	Description			
SI+					
SI-	Encodor cianal innut	Recommended resolver transformation ratio: 0.5			
CO+	Encoder signal input	Recommended resolver transformation ratio. 0.5			
CO-					
EX+	Encoder excitation	1. Factory setting of excitation: 10 kHz			
EX-	signal	Supporting resolvers with an excitation voltage of 7 Vrms			
A2+					
A2-		1. Differential input of 5 V			
B2+	Pulse setting				
B2-		2. Response frequency: 200 kHz			
Z2+					
Z2-					
AO+		1. Differential output of 5 V			
AO-		Frequency-divided output of resolver simulated			
BO+	Frequency-divided	A1, B1, and Z1, which is equal to an incremental			
BO-	output	PG card of 1024 pps.			
ZO+		3. Supporting frequency division of 2 ^N , which can			
ZO-		be set through P20.16 or P24.16 4. Max. output frequency: 200 kHz			

The following figure shows the external wiring of the UMI-S0013 expansion card.

A.5.3 Multifunction incremental PG card (UMI-S0011)

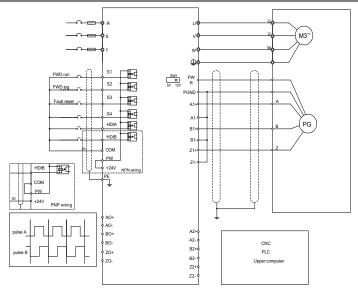
The terminals are arranged as follows:

The switch SW1 is used to set the voltage class (5 V or 12 V) of the power supply of the encoder. The DIP switch can be operated with an auxiliary tool.

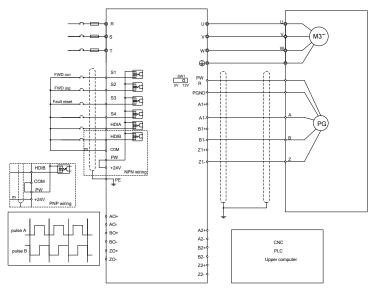
PE	AO+	BO+	ZO+	A1+	B1+	Z1+	A2+	B2+	Z2+	PWR
GND	AO-	во-	ZO-	A1-	B1-	Z1-	A2-	B2-	Z2-	PGND

Indicator definition

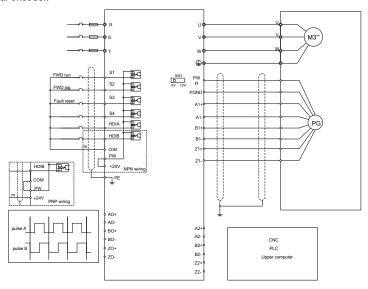
Indicator	Name	Description		
LED1	Signal indicator	Blinking (on for 500ms, off for 500ms): A1 or B1 signal is disconnected during encoder rotating. On: in other states.		
LED2	Power indicator	On: The expansion card is powered on. Off: The expansion card is not powered on.		


Indicator	Name	Description
LED3	State indicator	On: The expansion card is establishing a connection with the control board. Blinking (on for 500ms, off for 500ms): The expansion card is properly connected to the control board. Off: The expansion card is disconnected from the control board.

The UMI-S0011 expansion card can be used in combination with multiple types of incremental encoders through different modes of wiring. It is user-friendly, adopting spring terminals.


UMI-S0011 terminal function description

Signal	Port	Description		
PWR		Voltage: 5 V/12 V ±5%		
	Encoder power	Max. output: 150 mA		
PGND	Encoder power	Select the voltage class through the switch SW1		
		based on the voltage class of the used encoder.		
A1+		4. Commonting mode wall interfered of 5 V/40 V		
A1-		1. Supporting push-pull interfaces of 5 V/12 V		
B1+	For a description	2. Supporting open collector interfaces of 5 V/12		
B1-	Encoder interface	V		
Z1+		3. Supporting differential interfaces of 5 V		
Z1-		4. Response frequency: 400 kHz		
A2+				
A2-				
B2+	Pulse setting	1. Supporting the same signal types as the		
B2-		encoder signal types		
Z2+		2. Response frequency: 400 kHz		
Z2-				
AO+				
AO-	Frequency-divided output			
BO+		1. Differential output of 5 V		
ВО-		2. Supporting frequency division of 1–255, which		
ZO+		can be set through P20.16 or P24.16		
ZO-				


The following figure shows the external wiring of the expansion card used in combination with an open collector encoder. A pull-up resistor is configured inside the PG card.

The following figure shows the external wiring of the expansion card used in combination with a push-pull encoder.

The following figure shows the external wiring of the expansion card used in combination with a differential encoder.

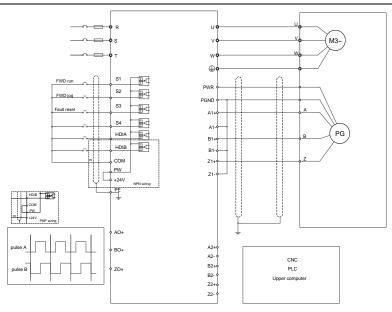
A.5.4 24V incremental PG card (UMI-S0010)

The terminals are arranged as follows:

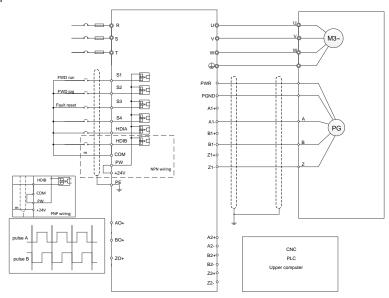
PE	AO+	BO+	ZO+	A1+	B1+	Z1+	A2+	B2+	Z2+	PWR
GND				A1-	B1-	Z1-	A2-	B2-	Z2-	PGND

Indicator definition

Name	Description
Signal indicator	Blinking (on for 500ms, off for 500ms): A1 or B1 signal is disconnected during encoder rotating. On: in other states.
Power	On: The expansion card is powered on. Off: The expansion card is not powered on.
	Signal indicator


Indicator	Name	Description
		On: The expansion card is establishing a connection with the control board.
LED3	State indicator	Blinking (on for 500ms, off for 500ms): The expansion card is properly connected to the control board. Off: The expansion card is disconnected from the control board.

UMI-S0010 can work in combination with multiple types of incremental encoders through various external wiring modes. It is user-friendly, adopting spring terminals. AO-, BO-, AND ZO- are internally short connected to PGND.


UMI-S0010 terminal function description

Signal	Port	Description		
PWR	Encoder power	Voltage: 24 V ± 5%		
PGND	supply	Max. output current: 150 mA		
A1+				
A1-		1. Supporting 24 V push-pull interfaces		
B1+	Encoder interface	2. Supporting 24 V open collector interfaces		
B1-	Encoder interiace	3. Supporting 24V differential interfaces		
Z1+		4. Frequency response: 400 kHz		
Z1-				
A2+				
A2-		1. Supporting 24 V push-pull and open collector		
B2+	Pulse reference	interfaces		
B2-	Pulse reference	Supporting 5V differential interfaces		
Z2+		3. Frequency response: 400 kHz		
Z2-				
AO+		1. Supporting open collector output. The input is		
BO+		externally connected with the pull-up resistor.		
ZO+	Frequency-divided output	Supporting frequency division of 1–255, which can be set through P20.16 or P24.16 Supporting frequency division output source,		
		which can be set through P20.17 or P24.17.		

The following figure shows the external wiring of the PG card when it is used in combination with an open collector encoder. A pull-up resistor is configured in the PG card.

The following figure shows the external wiring of the PG card when it is used in combination with a push-pull encoder.

Appendix B Technical data

B.1 What this chapter contains

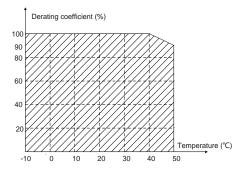
This chapter describes the technical data of the VFD and its compliance to CE and other quality certification systems.

B.2 Derated application

B.2.1 Capacity

Choose a VFD based on the rated current and power of the motor. To endure the rated power of the motor, the rated output current of the VFD must be larger or equal to the rated current of the motor. The rated power of the VFD must be higher or equal to that of the motor.

Note:


- The maximum allowable shaft power of the motor is limited to 1.5 times the rated power of the
 motor. If the limit is exceeded, the VFD automatically restricts the torque and current of the motor.
 This function effectively protects the input shaft against overload.
- The rated capacity is the capacity at the ambient temperature of 40°C.
- You need to check and ensure that the power flowing through the common DC connection in the common DC system does not exceed the rated power of the motor.

B.2.2 Derating

If the ambient temperature at the VFD installation site exceeds 40°C, the VFD installation site altitude exceeds 1000m, a cover with heat dissipation vents is used, or the carrier frequency is higher than the recommended, the VFD needs to be derated.

B.2.2.1 Derating due to temperature

When the temperature ranges from 40°C to 50°C, the rated output current is derated by 1% for each increase of 1°C.

Note: It is not recommended to use the VFD at an environment with the temperature higher than 50°C. In case of violation, we shall bear no liability for the consequences caused.

B.2.2.2 Derating due to altitude

When the altitude of the site where the VFD is installed is lower than 1000 m, the VFD can run at the

rated power. When the altitude exceeds 1000m, derate 1% for every additional 100m.

B.2.2.3 Derating due to carrier frequency

The VFDs in different power classes are different in carrier frequency. The rated power of a VFD is defined based on the carrier frequency set in factory. If the carrier frequency exceeds the factory setting, the power of the VFD is derated by 10% for each increased 1 kHz.

	Rated	Carrier frequency													
VFD model	power	2kHz	3kHz	4kHz	5kHz	6kHz		8kHz	9kHz		11kHz	12kHz	13kHz	14kHz	15kHz
UMI-0007CU-B7	(kW) 0.75	400.00/	400.00/	100.0%	400.00/	400.00/	400.00/	400.00/	02.00/	00.40/	02.20/	70.70/	74.4%	70.0%	CC 70/
UMI-0015CU-B7	1.5			100.0%											
UMI-0022CU-B7	2.2			100.0%										73.0%	
UMI-0040CU-B7	4			100.0%										72.7%	
UMI-0055CU-B7	5.5			100.0%									75.0%	71.1%	
UMI-0075CU-B7	7.5			100.0%						89.3%		80.3%	76.2%	72.4%	
UMI-0110CU-B7	11			100.0%							86.6%		79.1%	75.6%	
UMI-0150CU-B7	15			100.0%					72.8%				73.170	70.070	12.470
UMI-0180CU-B7	18.5			100.0%					72.3%		64.3%		-	_	_
UMI-0220CU-B7	22			100.0%				76.1%		67.3%	63.5%	60.0%	_	_	_
UMI-0300CU-B7	30			100.0%					87.6%	82.7%	78.3%	74.3%	_	_	_
UMI-0370CU-B7	37			100.0%				78.1%					_	_	_
UMI-0450CU-B7	45	100.0%	100.0%	100.0%	93.1%	86.8%	81.1%	75.9%	71.2%	66.9%	63.0%	59.4%	_	_	_
UMI-0550CU-B7	55	100.0%	100.0%	100.0%	94.9%	90.1%	85.6%	81.5%	77.5%	73.9%	70.4%	67.2%	-	-	-
UMI-0015EU-B7	1.5	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	92.2%	85.1%	78.9%	73.5%	68.4%	64.1%	60.3%
UMI-0022EU-B7	2.2	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	91.6%	84.8%	78.4%	72.8%	67.6%	63.4%	59.6%
UMI-0040EU-B7	4	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	99.5%	93.9%
UMI-0055EU-B7	5.5	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	93.1%	86.9%	81.3%	76.2%	71.6%	67.4%	63.6%
UMI-0075EU-B7	7.5	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	92.6%	86.0%	80.0%	74.6%	69.9%	65.6%	61.7%
UMI-0110EU-B7	11	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	92.3%	85.4%	79.4%	74.0%	69.2%	64.8%	60.9%
UMI-0150EU-B7	15	100.0%	100.0%	100.0%	100.0%	97.3%	88.4%	80.8%	74.1%	68.3%	63.1%	58.6%	-	-	-
UMI-0180EU-B7	18	100.0%	100.0%	100.0%	90.2%	81.6%	74.3%	67.8%	62.2%	57.4%	53.0%	49.2%	-	-	-
UMI-0220EU-B7	22	100.0%	100.0%	100.0%	100.0%	91.8%	84.4%	77.7%	71.9%	66.8%	62.1%	58.1%	-	-	-
UMI-0300EU-B7	30	100.0%	100.0%	100.0%	90.0%	81.4%	74.1%	67.8%	62.3%	57.5%	53.4%	49.7%	-	-	-
UMI-0370EU-B7	37	100.0%	100.0%	100.0%	89.7%	80.9%	73.4%	66.9%	61.3%	56.4%	52.1%	48.3%	-	-	-
UMI-0450EU-B7	45	100.0%	100.0%	100.0%	89.7%	81.0%	73.5%	67.1%	61.5%	56.7%	52.5%	48.8%	-	-	-
UMI-0550EU-B7	55	100.0%	100.0%	100.0%	100.0%	100.0%	95.6%	87.6%	80.5%	74.4%		-	-	-	
UMI-0750EU-B7	75	100.0%	100.0%	97.3%	87.9%	79.9%	72.9%	66.8%	61.5%	56.8%		-	-	-	
UMI-0900EU-B7	90	100.0%	100.0%	93.9%	83.9%	75.4%	68.1%	61.8%	56.4%	51.8%			-	-	

	Rated	d Carrier frequency													
VFD model	power (kW)	2kHz	3kHz	4kHz	5kHz	6kHz	7kHz	8kHz	9kHz	10kHz	11kHz	12kHz	13kHz	14kHz	15kHz
UMI-1100EU-B7	110	100.0%	90.2%	81.6%	74.0%	67.4%	61.6%	56.5%	52.1%	48.1%					
UMI-1320EU-B7	132		100.0%		83.5%	75.2%	68.2%	62.1%	56.9%	52.3%			-		
UMI-1600EU-B7	160			100.0%		93.9%	85.7%	78.6%	72.3%	66.8%			-	-	
UMI-1850EU-B7	185	100.0%	100.0%	100.0%	92.5%	84.1%	76.9%	70.5%	64.9%	59.9%			-	-	
UMI-2000EU-B7	200	100.0%	100.0%	91.2%	82.7%	75.3%	68.7%	63.0%	58.0%	53.6%			-	-	
UMI-2200EU-B7	220	100.0%	100.0%	100.0%	91.3%	82.8%	75.5%	69.2%	63.6%	58.7%			-	-	
UMI-2500EU-B7	250	100.0%	99.2%	89.2%	80.6%	73.2%	66.7%	61.1%	56.2%	51.9%		-	-	-	
UMI-2800EU-B7	280	100.0%	100.0%	100.0%	91.1%	83.0%	75.9%	69.6%	64.1%	59.3%		-	-	-	
UMI-3150EU-B7	315	100.0%	97.9%	88.6%	80.4%	73.3%	67.0%	61.5%	56.6%	52.3%			-	-	
UMI-3500EU-B7	350	100.0%	99.4%	89.3%	80.6%	73.1%	66.5%	60.8%	55.9%	51.5%		-	-	-	
UMI-4000EU-B7	400	100.0%	100.0%	95.1%	85.1%	76.4%	68.9%	62.4%	56.9%	51.9%			-	-	
UMI-5000EU-B7	500	100.0%	88.9%	79.2%	70.9%	63.7%	57.4%	52.1%	47.4%	43.3%		-	-	-	
UMI-0007FU-B7	0.75	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
UMI-0015FU-B7	1.5	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
UMI-0022FU-B7	2.2	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
UMI-0040FU-B7	4	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
UMI-0055FU-B7	5.5	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
UMI-0075FU-B7	7.5	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	98.2%
UMI-0110FU-B7	11	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	99.5%	91.6%	84.8%	78.8%	73.4%
UMI-0150FU-B7	15	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	90.5%	82.5%	75.7%	69.7%	64.5%	59.9%	55.8%
UMI-0180FU-B7	18.5	100.0%	100.0%	100.0%	84.7%	72.9%	63.6%	56.1%	50.0%	44.9%	40.6%	37.0%	-	-	-
UMI-0220FU-B7	22	100.0%	100.0%	100.0%	85.1%	73.4%	63.9%	56.3%	50.1%	45.0%	40.7%	37.0%	-	-	-
UMI-0300FU-B7	30	100.0%	100.0%	100.0%	99.4%	86.4%	76.0%	67.2%	60.2%	54.2%	49.1%	44.7%	-	-	-
UMI-0370FU-B7	37	100.0%	100.0%	100.0%	86.0%	74.6%	65.6%	58.1%	51.9%	46.7%	42.5%	38.7%	-	-	-
UMI-0450FU-B7	45	100.0%	100.0%	100.0%	87.5%	77.1%	68.6%	61.3%	55.4%	50.2%	45.7%	41.9%	-	-	-
UMI-0550FU-B7	55	100.0%	84.9%	73.1%	63.7%	56.3%	50.0%	44.9%	40.6%	37.0%	-	-	-	-	-
UMI-0750FU-B7	75	100.0%	100.0%	87.4%	74.1%	63.9%	55.8%	49.2%	43.8%	39.3%	-	-	-	-	_
UMI-0900FU-B7	90	100.0%	100.0%	87.1%	74.5%	64.7%	56.8%	50.5%	45.3%	40.9%	-	-	-	-	-
UMI-1100FU-B7	110	100.0%	82.4%	69.3%	59.3%	51.5%	45.3%	40.2%	36.0%	32.5%	-	-	-	-	-

B.3 Motor connection data

Motor type	Asynchronous induction motor or permanent-magnet synchronous motor
Voltage	0–U1 (rated voltage of the motor), 3PH symmetrical, Umax (rated voltage of the VFD) at the field-weakening point
Short-circuit protection	The short-circuit protection for the motor output meets the requirements of IEC 61800-5-1.
Frequency	0–599 Hz
Frequency resolution	0.01 Hz
Current	See 3.6 Product ratings.
Power limit	1.5 times the rated power of the motor
Carrier frequency	1–15 kHz

B.3.1 EMC compatibility and motor cable length

The following table describes the maximum motor cable lengths that meet the requirements of the EU EMC directive (2014/30/EU).

All models (with external EMC filters)	Maximum motor cable length (m)
Environment category II (C3)	30

For description about the environments categories I (C2) and II (C3), see section Error! Reference source not found. Error! Reference source not found.

Appendix C Dimensions

C.1 What this chapter contains

This chapter describes the dimension drawings of UMI-B7 series VFDs. The dimension unit used in the drawings is mm.

C.2 Keypad structure

C.2.1 Structure diagram

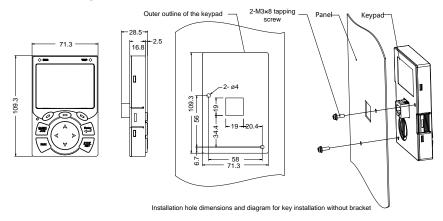


Figure C-1 Keypad structure diagram

C.2.2 Keypad installation bracket

Note: When installing a keypad in a position away from the VFD, you can directly use M3 threaded screws or a keypad bracket. For VFDs of 220V 0.75 to 15 kW and 460V 1.5 to 30 kW, you need to use optional keypad installation brackets. For those of 220V 18 to 55 kW, 460V 37 to 500 kW, and 575V, 18.5 to 110 kW, you can use optional brackets or use the standard keypad brackets externally.

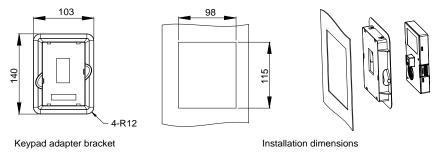


Figure C-2 Keypad installation bracket

C.3 VFD structure

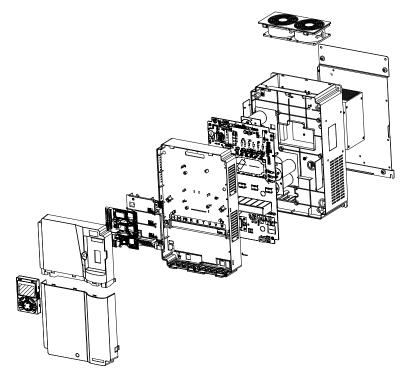


Figure C-3 VFD structure diagram

C.4 Dimensions of VFDs of AC 3PH 200V-240V and 380V-480V

C.4.1 Wall installation dimensions

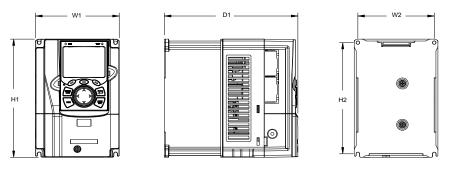


Figure C-4 Wall installation diagram of VFDs of 220V 0.75–15kW and 460V 1.5–30kW

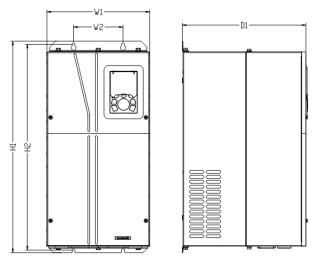


Figure C-5 Wall installation diagram of VFDs of 220V 18.5–55kW and 460V 37–55kW

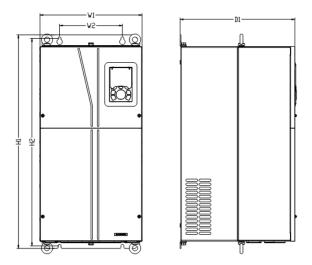


Figure C-6 Wall installation diagram of VFDs of 460V 75-110kW

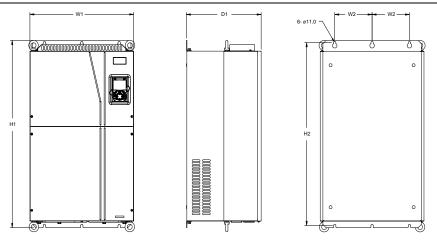
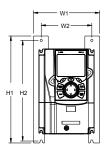


Figure C-7 Wall installation diagram of VFDs of 460V 132-200kW


Table C-1 Wall installation dimensions of 220V 0.75–55kW (unit: mm)

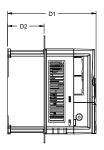

Model	W1	W2	H1	H2	D1	Installation hole
0.75kW	126	115	186	175	185	Ø 5
1.5kW-2.2kW	146	131	256	243.5	192	Ø 5
4kW-5.5kW	170	151	320	303.5	219	Ø 6
7.5kW	230	210	330	311	217	Ø 6
11kW-15kW	255	237	400	384	242	Ø7
18.5kW-30kW	270	130	557	540	325	Ø 7
37kW-55kW	325	200	682	661	365	Ø 9.5

Table C-2 Wall installation dimensions of 460V VFDs (unit: mm)

Model	W1	W2	H1	H2	D1	Installation hole
1.5kW-2.2kW	126	115	186	175	185	Ø 5
4kW-5.5kW	146	131	256	243.5	192	Ø 5
7.5kW-11kW	170	151	320	303.5	219	Ø 6
15kW-18.5kW	230	210	330	311	217	Ø6
22kW-30kW	255	237	400	384	242	Ø 7
37kW-55kW	270	130	557	540	325	Ø7
75kW-110kW	325	200	682	661	365	Ø 9.5
132kW-200kW	500	180	872	850	360	Ø 11

C.4.2 Flange installation dimensions

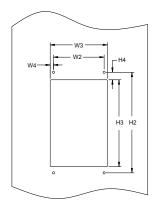
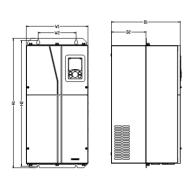



Figure C-8 Flange installation diagram of VFDs of 220V 0.75–15kW and 460V 1.5–30kW

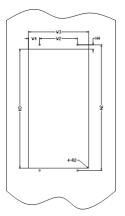


Figure C-9 Flange installation diagram of VFDs of 220V 18.5–55kW, 460V 37–55kW, and 460V 75–110kW

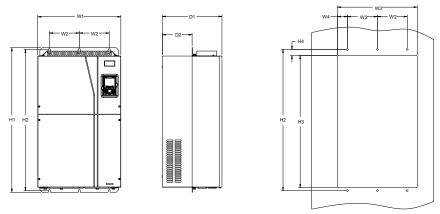


Figure C-10 Flange installation diagram of VFDs of 460V 132–200kW

Table C-3 Flange installation dimensions of 220V 0.75–55kW (unit: mm)

Model	W1	W2	W3	W4	H1	H2	Н3	H4	D1	D2	Installation hole
0.7kW	150	115	130	7.5	234	220	190	16.5	185	65.5	Ø 5
1.5kW-2.2kW	170	131	150	9.5	292	276	260	10	192	79.5	Ø 6
4kW-5.5kW	191	151	174	11.5	370	351	324	15	219	113	Ø6
7.5kW	250	210	234	12	375	356	334	10	217	108	Ø 6
11kW-15kW	275	237	259	11	445	426	404	10	242	119	Ø7
18.5kW-30kW	270	130	261	65.5	557	540	516	17.5	325	167	Ø 7
37kW-55kW	325	200	317	58.5	682	661	626	23.5	363	182	Ø 9.5

Table C-4 Flange installation dimensions of 460V VFDs (unit: mm)

Model	W1	W2	W3	W4	H1	H2	НЗ	H4	D1	D2	Installation hole
1.5kW-2.2kW	150.2	115	130	7.5	234	220	190	13.5	185	65.5	Ø 5
4kW-5.5kW	170.2	131	150	9.5	292	276	260	10	192	78	Ø 5
7.5kW-11kW	191.2	151	174	11.5	370	351	324	15	219	113	Ø6
15kW-18.5kW	250.2	210	234	12	375	356	334	10	217	108	Ø6
22kW-30kW	275.2	237	259	11.5	445	426	404	10	242	118	Ø 6
37kW-55kW	270	130	261	65.5	557	540	516	17.5	325	167	Ø7
75kW-110kW	325	200	317	58.5	682	661	626	23.5	363	182	Ø 9.5
132kW– 200kW	500	180	480	60	872	850	796	37	358	178.5	Ø 11

C.4.3 Floor installation dimensions

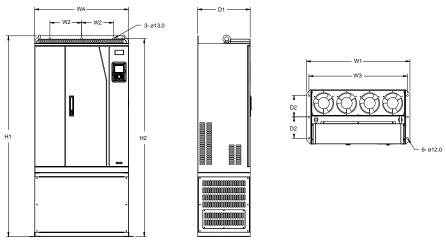


Figure C-11 Floor installation diagram of VFDs of 460V 220-315kW

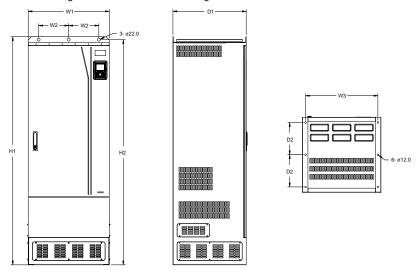


Figure C-12 Floor installation diagram of VFDs of 460V 355-500kW

Table C-5 Floor installation dimensions of 460V VFDs (unit: mm)

Model	W1	W2	W3	W4	H1	H2	D1	D2	Installation hole
220kW-315kW	750	230	714	680	1410	1390	380	150	Ø 13/12
350kW-500kW	620	230	572	-	1700	1678	560	240	Ø 22/12

C.5 Dimensions of VFDs of AC 3PH 520V-600V

C.5.1 Wall installation dimensions

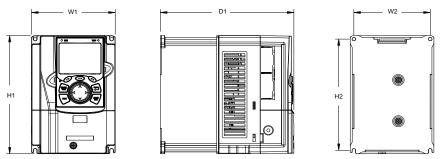
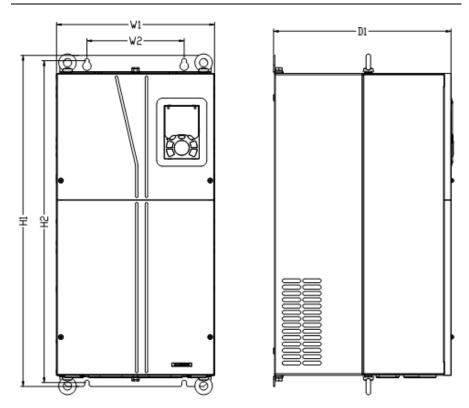
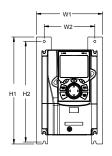


Figure C-13 Wall installation diagram of VFDs of 575V 0.75–18.5kW

Table C-6 Wall installation dimensions of VFDs of 575V 0.75–18.5kW

Model	W1	W2	W3	H1	H2	D1	Installation hole
0.75kW-2.2kW	146	131	-	256	243.5	192	Ø 5
4kW-7.5kW	170	151	-	320	303.5	219	Ø 6
11kW-18.5kW	230	210	-	330	311	217	Ø 6

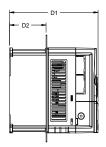

Figure C-14 Wall installation diagram of VFDs of 575V 22-110kW

Table C-7 Wall installation dimensions of VFDs of 575V 22-110kW (unit: mm)

Model	W1	W2	H1	H2	D1	Installation hole
22kW-37kW	270	130	557	540	325	Ø7
45kW-110kW	325	200	682	661	365	Ø 9.5

C.5.2 Flange installation dimensions

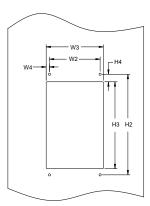
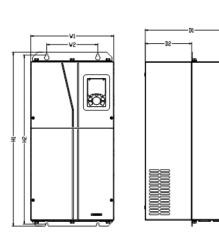



Figure C-15 Flange installation diagram of VFDs of 575V 0.75–18.5kW

Table C-8 Flange installation dimensions of VFDs of 575V 0.75–18.5kW (unit: mm)

Model	W1	W2	W3	W4	H1	H2	Н3	H4	D1	D2	Installation hole
0.75kW-2.2kW	170.2	131	150	9.5	292	276	260	10	192	78	Ø 5
4kW-7.5kW	191.2	151	174	11.5	370	351	324	15	219	113	Ø 6
11kW-18.5kW	250.2	210	234	12	375	356	334	10	217	108	Ø6

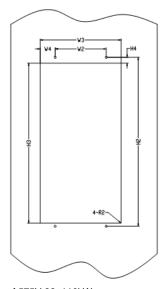
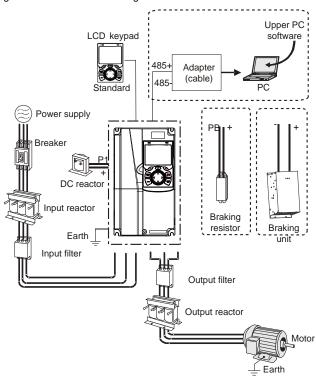


Figure C-16 Flange installation diagram of VFDs of 575V 22–110kW

Table C-9 Flange installation dimensions of VFDs of 575V 22–110kW (unit: mm)

Model	W1	W2	W3	W4	H1	H2	Н3	H4	D1	D2	Installation hole
22kW-37kW	270	130	261	65.5	557	540	516	17.5	325	167	Ø7
45kW-110kW	325	200	317	58.5	682	661	626	23.5	363	182	Ø 9.5


Appendix D Optional peripheral accessories

D.1 What this chapter contains

This chapter describes how to select optional accessories of UMI-B7 series VFDs.

D.2 Wiring of peripheral accessories

The following figure shows the external wiring of a UMI-B7 series VFD.

Note:

- The VFDs of 220V ≤15kW, 460V ≤30kW, and 575V ≤18.5kW are configured with built-in braking units.
- 2. The VFDs of 220V 18.5–55kW, 460V ≥37kW, and 575V ≥22kW are configured with P1 terminals and can be connected to optional DC reactors and braking units.

Image	Name	Description			
	Cable	Accessory for signal transmission			
	Breaker	Device for electric shock prevention and protection against short-to-ground that may cause current leakage			

Image	Name	Description
		and fire. Select residual-current circuit breakers (RCCBs) that are applicable to VFDs and can restrict
		high-order harmonics, and of which the rated sensitive
		current for one VFD is larger than 30 mA.
	Input reactor	Accessories used to improve the current adjustment coefficient on the input side of the VFD, and thus restrict
	DC reactor	high-order harmonic currents. The VFDs of 220V 18.5–55kW, 460V ≥37kW and 575V ≥22kW can be connected to external DC reactors.
500	Input filter	Accessory that restricts the electromagnetic interference generated by the VFD and transmitted to the public grid through the power cable. Try to install the input filter near the input terminal side of the VFD.
or	Brake unit or braking resistor	Accessories used to consume the regenerative energy of the motor to reduce the deceleration time. The VFDs of 220V ≤15kW, 460V ≤30kW and 575V ≤18.5kW need only braking resistors and the VFDs of 220V 18.5–55kW, 460V ≥37kW and 575V ≥22kW need braking units.
500	Output filter	Accessory used to restrict interference generated in the wiring area on the output side of the VFD. Try to install the output filter near the output terminal side of the VFD.
	Output reactor	Accessory used to lengthen the valid transmission distance of the VFD, which effectively restrict the transient high voltage generated during the switch-on and switch-off of the IGBT module of the VFD.

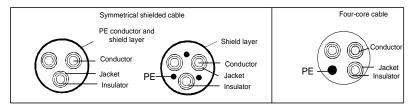
D.3 Power supply

Refer to chapter 4 Installation guidelines.

Ensure that the voltage class of the VFD is consistent with that of the grid.

D.4 Cables

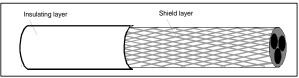
D.4.1 Power cables


The sizes of the input power cables and motor cables must meet the local regulation.

- The input power cables and motor cables must be able to carry the corresponding load currents.
- The maximum temperature margin of the motor cables in continuous operation cannot be lower than 70°C.
- The conductivity of the PE grounding conductor is the same as that of the phase conductor, that
 is, the cross-sectional areas are the same.

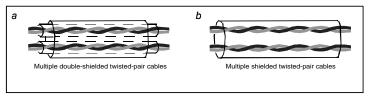
For details about the EMC requirements, see 0 Technical data.

To meet the EMC requirements stipulated in the CE standards, you must use symmetrical shielded cables as motor cables (as shown in the following figure).


Four-core cables can be used as input cables, but symmetrical shielded cables are recommended. Compared with four-core cables, symmetrical shielded cables can reduce electromagnetic radiation as well as the current and loss of the motor cables.

Note: If the conductivity of the shield layer of the motor cables cannot meet the requirements, separate PE conductors must be used

To protect the conductors, the cross-sectional area of the shielded cables must be the same as that of the phase conductors if the cable and conductor are made of materials of the same type. This reduces grounding resistance, and thus improves impedance continuity.


To effectively restrict the emission and conduction of radio frequency (RF) interference, the conductivity of the shielded cable must at least be 1/10 of the conductivity of the phase conductor. This requirement can be well met by a copper or aluminum shield layer. The following figure shows the minimum requirement on motor cables of a VFD. The cable must consist of a layer of spiral-shaped copper strips. The denser the shield layer is, the more effectively the electromagnetic interference is restricted.

Cross-section of the cable

D.4.2 Control cables

All analog control cables and cables used for frequency input must be shielded cables. Analog signal cables need to be double-shielded twisted-pair cables (as shown in figure a). Use one separate shielded twisted pair for each signal. Do not use the same ground wire for different analog signals.

Power cable arrangement

For low-voltage digital signals, double-shielded cables are recommended, but shielded or unshielded twisted pairs (as shown in figure b) can also be used. For frequency signals, however, only shielded cables can be used

Relay cables need to be those with metal braided shield layers.

Keypads need to be connected by using network cables. In complicated electromagnetic environments, shielded network cables are recommended.

Note: Analog signals and digital signals cannot use the same cables, and their cables must be arranged separately.

Do not perform any voltage endurance or insulation resistance tests, such as high-voltage insulation tests or using a megohmmeter to measure the insulation resistance, on the VFD or its components. Insulation and voltage endurance tests have been performed between the main circuit and chassis of each VFD before delivery. In addition, voltage limiting circuits that can automatically cut off the test voltage are configured inside the VFDs.

Note: Check the insulation conditions of the input power cable of a VFD according to the local regulations before connecting it.

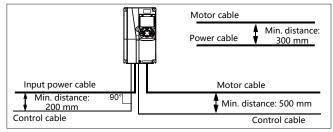
VFD model	Recommended cable size (AWG)		Required torque	Wire	
VFD model	R, S, T; U, V, W; P1, (+), PB, (-)	PE	R, S, T; U, V, W; P1, (+), PB, (-)	PE	connector (##)
UMI-0007CU-B7	14	12	11	10	Optional
UMI-0015CU-B7	8	12	11	10	Required
UMI-0022CU-B7	8	12	11	10	Required
UMI-0040CU-B7	8	10	25	15	Optional
UMI-0055CU-B7	8	10	25	15	Optional
UMI-0075CU-B7	6	15	20	8	Required
UMI-0110CU-B7	3	8	25.5	18	Required
UMI-0150CU-B7	3	6	25.5	18	Required
UMI-0180CU-B7	2/0	6	25.5	75	Required
UMI-0220CU-B7	2/0	6	25.5	75	Required

VFD model	Recommended cable size (AWG)		Required torque	Wire	
VFD model	R, S, T; U, V, W; P1, (+), PB, (-)	PE	R, S, T; U, V, W; P1, (+), PB, (-)	PE	connector (##)
UMI-0300CU-B7	2/0	6	25.5	75	Required
UMI-0370CU-B7	2/0AWG	1AWG	60	10	Required
UMI-0450CU-B7	1/0 AWG x 2	1AWG	90	10	Required
UMI-0550CU-B7	1/0 AWG x 2	1AWG	90	10	Required
UMI-0015EU-B7	14AWG	12AWG	11	10	Optional
UMI-0022EU-B7	14AWG	12AWG	11	10	Optional
UMI-0040EU-B7	8AWG	12AWG	11	10	Required
UMI-0055EU-B7	8AWG	10AWG	11	10	Required
UMI-0075EU-B7	8AWG	10AWG	25	15	Optional
UMI-0110EU-B7	8AWG	10AWG	25	15	Optional
UMI-0150EU-B7	6AWG	10AWG	20	15	Required
UMI-0180EU-B7	6AWG	8AWG	20	15	Required
UMI-0220EU-B7	3AWG	8AWG	25.5	18	Required
UMI-0300EU-B7	3AWG	6AWG	25.5	18	Required
UMI-0370EU-B7	2/0	6AWG	25.5	75	Required
UMI-0450EU-B7	2/0	6AWG	25.5	75	Required
UMI-0550EU-B7	2/0	6AWG	25.5	75	Required
UMI-0750EU-B7	3/0AWG	1AWG	80	10	Required
UMI-0900EU-B7	1/0 AWG x 2	1AWG	90	10	Required
UMI-1100EU-B7	1/0 AWG x 2	1AWG	90	10	Required
UMI-1320EU-B7					
UMI-1600EU-B7	350kcmil x 2	1AWG	338.2	338.2	Optional
UMI-1850EU-B7	330KGIIII X Z	IAWG	330.2	330.2	Ориона
UMI-2000EU-B7					
UMI-2200EU-B7]				
UMI-2500EU-B7	0501	4/0.414/0	200.0	000.0	0
UMI-2800EU-B7	350kcmil x 3	4/0AWG	338.2	338.2	Optional
UMI-3150EU-B7					
UMI-3500EU-B7					
UMI-4000EU-B7	350kcmil x 4	4/0AWG	338.2	338.2	Optional
UMI-5000EU-B7					

VEDdel	Recommended cable size (AWG)		Required torque	Wire	
VFD model	R, S, T; U, V, W; P1, (+), PB, (-)	PE	R, S, T; U, V, W; P1, (+), PB, (-)	PE	connector (##)
UMI-0007FU-B7	14AWG	14AWG	11	10	Optional
UMI-0015FU-B7	14AWG	14AWG	11	10	Optional
UMI-0022FU-B7	14AWG	14AWG	11	10	Optional
UMI-0040FU-B7	14AWG	14AWG	25	15	Optional
UMI-0055FU-B7	12AWG	12AWG	25	15	Optional
UMI-0075FU-B7	10AWG	10AWG	25	15	Optional
UMI-0110FU-B7	10AWG	10AWG	20	15	Optional
UMI-0150FU-B7	10AWG	10AWG	20	15	Optional
UMI-0180FU-B7	8AWG	10AWG	20	15	Optional
UMI-0220FU-B7					
UMI-0300FU-B7	4AWG	8AWG	60	10	Required
UMI-0370FU-B7					
UMI-0450FU-B7					
UMI-0550FU-B7					
UMI-0750FU-B7	3/0AWG	2AWG	60	10	Required
UMI-0900FU-B7					
UMI-1100FU-B7					
Control terminal block	26-14(Str/Sol) AWG		4.5		Optional

Note:

- It is appropriate to use the recommended cable size at 40 ℃ and rated current. The wiring distance
 cannot be more than 100m.
- Terminals P1, (+), PB and (-) connect the DC reactor options and parts.
- Use 75°C CU wire only for field input and output wire.


D.4.3 Cable arrangement

Motor cables must be arranged away from other cables. The motor cables of several VFDs can be arranged in parallel. It is recommended that you arrange the motor cables, input power cables, and control cables separately in different trays. The output dU/dt of the VFDs may increase electromagnetic interference on other cables. Do not arrange other cables and the motor cables in parallel.

If a control cable and power cable must cross each other, ensure that the angle between them is 90 degrees.

The cable trays must be connected properly and well grounded. Aluminum trays can implement local equipotential.

The following figure shows the cable arrangement distance requirements.

Cable arrangement distances

D.4.4 Insulation inspection

Check the motor and the insulation conditions of the motor cable before running the motor.

- Ensure that the motor cable is connected to the motor, and then remove the motor cable from the U, V, and W output terminals of the VFD.
- 2. Use a megohmmeter of 500 V DC to measure the insulation resistance between each phase conductor and the protection grounding conductor. For details about the insulation resistance of the motor, see the description provided by the manufacturer.

Note: The insulation resistance is reduced if it is damp inside the motor. If it may be damp, you need to dry the motor and then measure the insulation resistance again.

D.5 Breaker and electromagnetic contactor

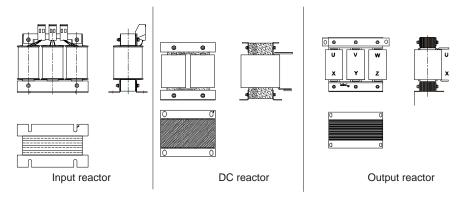
The circuit breaker is mainly used to prevent electric shock accidents and short circuits to the ground that may cause leakage current fire. The electromagnetic contactor is mainly used to control the main circuit power on and off, which can effectively cut off the input power of the VFD in case of system failure to ensure safety.

According to the working principle and structure of breakers, if the manufacturer's regulation is not followed, hot ionized gases may escape from the breaker enclosure when a short-circuit occurs. To ensure safe use, exercise extra caution when installing and placing the breaker. Follow the manufacturer's instructions.

Model	Max. prospective line lsc	Fuse class type	Fuse current rating
UMI-0007CU-B7	10kA	CC	20A; 600V
UMI-0015CU-B7	10kA	CC	20A; 600V
UMI-0022CU-B7	10kA	CC	20A; 600V
UMI-0040CU-B7	10kA	Т	40A; 600V
UMI-0055CU-B7	10kA	Т	50A; 600V

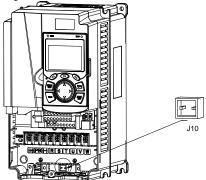
Model	Max. prospective line lsc	Fuse class type	Fuse current rating
UMI-0075CU-B7	10kA	Т	50A; 600V
UMI-0110CU-B7	10kA	Т	90A; 600V
UMI-0150CU-B7	10kA	Т	125A; 600V
UMI-0180CU-B7	10kA	Т	150A; 600V
UMI-0220CU-B7	10kA	Т	150A; 600V
UMI-0300CU-B7	10kA	Т	200A; 600V
UMI-0370CU-B7	10kA	Т	250A; 600V
UMI-0450CU-B7	10kA	Т	250A; 600V
UMI-0550CU-B7	10kA	Т	250A; 600V
UMI-0015EU-B7	5kA	CC	20A; 600V
UMI-0022EU-B7	5kA	CC	20A; 600V
UMI-0040EU-B7	5kA	CC	20A/30A; 600V
UMI-0055EU-B7	5kA	CC	30A/40A; 600V
UMI-0075EU-B7	5kA	Т	40A/50A; 600V
UMI-0110EU-B7	5kA	Т	50A/50A; 600V
UMI-0150EU-B7	5kA	Т	50A/80A; 600V
UMI-0180EU-B7	5kA	Т	80A/90A; 600V
UMI-0220EU-B7	10kA	Т	90A/125A; 600V
UMI-0300EU-B7	10kA	Т	125A/150A; 600V
UMI-0370EU-B7	10kA	Т	150A/200A; 600V
UMI-0450EU-B7	10kA	Т	200A/200A; 600V
UMI-0550EU-B7	10kA	Т	200A; 600V
UMI-0750EU-B7	10kA	Т	400A; 600V
UMI-0900EU-B7	10kA	Т	400A; 600V
UMI-1100EU-B7	10kA	Т	400A; 600V
UMI-1320EU-B7	100kA	1	600A; 600V
UMI-1600EU-B7	100kA	1	600A; 600V
UMI-1850EU-B7	100kA	1	600A; 600V
UMI-2000EU-B7	100kA	1	600A; 600V
UMI-2200EU-B7	100kA	1	900A; 600V
UMI-2500EU-B7	100kA	1	900A; 600V
UMI-2800EU-B7	100kA	1	900A; 600V
UMI-3150EU-B7	100kA	1	1500A; 600V
UMI-3500EU-B7	100kA	1	1500A; 600V
UMI-4000EU-B7	100kA	1	1500A; 600V
UMI-5000EU-B7	100kA	1	1500A; 600V
UMI-0007FU-B7	5kA	Т	10A; 600V

Model	Max. prospective line lsc	Fuse class type	Fuse current rating
UMI-0015FU-B7	5kA	Т	10A; 600V
UMI-0022FU-B7	5kA	Т	15A; 600V
UMI-0040FU-B7	5kA	Т	15A; 600V
UMI-0055FU-B7	5kA	Т	20A; 600V
UMI-0075FU-B7	5kA	Т	25A; 600V
UMI-0110FU-B7	5kA	Т	30A; 600V
UMI-0150FU-B7	5kA	Т	40A; 600V
UMI-0180FU-B7	5kA	Т	45A; 600V
UMI-0220FU-B7	5kA	Т	100A; 600V
UMI-0300FU-B7	5kA	Т	100A; 600V
UMI-0370FU-B7	5kA	Т	100A; 600V
UMI-0450FU-B7	10kA	Т	250A; 600V
UMI-0550FU-B7	10kA	Т	250A; 600V
UMI-0750FU-B7	10kA	Т	250A; 600V
UMI-0900FU-B7	10kA	Т	250A; 600V
UMI-1100FU-B7	10kA	Т	250A; 600V


Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes.

D.6 Reactors

When the voltage of the grid is high, the transient large current that flows into the input power circuit may damage rectifier components. You need to configure an AC reactor on the input side, which can also improve the current adjustment coefficient on the input side.


If the distance between the VFD and the motor is longer than 50m, frequent overcurrent protection may occur to the VFD because of high leakage current caused by parasitic capacitance effects from the long cables to the ground. To avoid the damage of the motor insulation, it is necessary to add reactor compensation.

The VFDs of 220V 18.5–55kW, 460V (≥37kW), and 575 (≥22kW) can be connected to external DC reactor for the improvement of power factors and the avoidance of damage from high input current to the rectifying components because of the high-capacity transformer. The device can also cease the damage to the rectifying components which are caused by supply net voltage transients and harmonic waves of the loads. If the distance between the VFD and motor is longer than 150m, contact Unitronics technical support.

D.7 Filters

UMI-B7 series VFDs are configured with built-in C3 filters which can be connected by J10.

Note: Do not connect C3 filters in IT power systems.

Interference filters on the input side can reduce the interference of VFDs (when used) on the surrounding devices.

Noise filters on the output side can decrease the radio noise caused by the cables between VFDs and motors and the leakage current of conducting wires.

D.8 Brake system

D.8.1 Braking component selection

When a VFD driving a high-inertia load decelerates or needs to decelerate abruptly, the motor runs in the power generation state and transmits the load-carrying energy to the DC circuit of the VFD, causing the bus voltage of the VFD to rise. If the bus voltage exceeds a specific value, the VFD reports an overvoltage fault. To prevent this from happening, you need to configure braking components.

	The design, installation, commissioning, and operation of the device must be performed by trained and qualified professionals.
	 Follow all the "Warning" instructions during the operation. Otherwise, major
	physical injuries or property loss may be caused.
^	♦ Only qualified electricians are allowed to perform the wiring. Otherwise,
4	damage to the VFD or braking components may be caused.
	♦ Read the braking resistor or unit instructions carefully before connecting them
	to the VFD.
	♦ Connect braking resistors only to the terminals PB and (+), and braking units
	only to the terminals (+) and (-). Do not connect them to other terminals.
	Otherwise, damage to the braking circuit and VFD and fire may be caused.
^	♦ Connect the braking components to the VFD according to the wiring diagram.
	If the wiring is not properly performed, damage to the VFD or other devices
	may be caused.

UMI-B7 series VFDs of 220V ≤15kW, 460V≤30kW) need internal braking units and the VFDs 220V ≥18.5kW), 460V (≥37kW) need external braking units. Select the resistance and power of braking resistors according to actual utilization.

The VFDs of 220V ≤15kW, 460V ≤30kW, and 575V ≤18.5kW are equipped with braking units but braking units are optional for the other models. Select braking resistors according to actual operation.

		Brake resistor	Cons	Min.		
Model	Model of braking unit	at 100% of braking torque (Ω)	10% braking	50% braking	80% braking	allowable braking resistance (Ω)
UMI-0007CU-B7		192	0.11	0.56	0.9	93
UMI-0015CU-B7		96	0.23	1.1	1.8	44
UMI-0022CU-B7		65	0.33	1.7	2.64	44
UMI-0040CU-B7	Embedded	36	0.6	3	4.8	33
UMI-0055CU-B7	braking unit	26	0.75	4.13	6.6	25
UMI-0075CU-B7		19	1.13	5.63	9	13
UMI-0110CU-B7		13	1.6	8	12.8	8.8
UMI-0150CU-B7		9.6	2	11	18	
UMI-0180CU-B7		8	3	14	22	6.4
UMI-0220CU-B7		6.5	3	17	26	
UMI-0300CU-B7	Contact for	4.8	5	23	36	2.5
UMI-0370CU-B7	information	3.9	6	28	44	3.5
UMI-0450CU-B7		3.2	7	34	54	2.4
UMI-0550CU-B7		2.6	8	41	66	2.4
UMI-0015EU-B7		326	0.23	1.1	1.8	170
UMI-0022EU-B7		222	0.33	1.7	2.6	130
UMI-0040EU-B7		122	0.6	3	4.8	80
UMI-0055EU-B7		89	0.75	4.1	6.6	60
UMI-0075EU-B7	Embedded	65	1.1	5.6	9	47
UMI-0110EU-B7	braking unit	44	1.7	8.3	13.2	31
UMI-0150EU-B7		32	2	11	18	23
UMI-0180EU-B7		27	3	14	22	19
UMI-0220EU-B7		22	3	17	26	17
UMI-0300EU-B7		17	5	23	36	17
UMI-0370EU-B7	Contact for	13	6	28	44	11.7
UMI-0450EU-B7	information	10	7	34	54	6.4
UMI-0550EU-B7	miomation	8	8	41	66	6.4

		Brake resistor		umed pov		Min.
Model	Model of braking unit	at 100% of braking torque (Ω)	10% braking	50% braking	80% braking	allowable braking resistance (Ω)
UMI-0750EU-B7		6.5	11	56	90	
UMI-0900EU-B7		5.4	14	68	108	4.4
UMI-1100EU-B7		4.5	14	83	132	4.4
UMI-1320EU-B7		3.7	20	99	158	3.2
UMI-1600EU-B7		3.1	24	120	192	
UMI-1850EU-B7		2.8	28	139	222	2.2
UMI-2000EU-B7		2.5	30	150	240	
UMI-2200EU-B7		2.2	33	165	264	4.0
UMI-2500EU-B7		2.0	38	188	300	1.8
UMI-2800EU-B7		3.6*2	21*2	105*2	168*2	
UMI-3150EU-B7		3.2*2	24*2	118*2	189*2	0.0*0
UMI-3500EU-B7		2.8*2	27*2	132*2	210*2	2.2*2
UMI-4000EU-B7		2.4*2	30*2	150*2	240*2	
UMI-5000EU-B7		2*2	38*2	186*2	300*2	1.8*2
UMI-0007FU-B7		707	0.2	0.7	1.1	470
UMI-0015FU-B7		464	0.3	1.4	2.2	300
UMI-0022FU-B7		330	0.5	2.0	3.2	220
UMI-0040FU-B7	Embedded	228	0.9	3.7	5.8	150
UMI-0055FU-B7	braking unit	165	1.2	5.1	8.0	110
UMI-0075FU-B7	braking unit	123	1.4	7.5	12.3	82
UMI-0110FU-B7		93	2	11	18	62
UMI-0150FU-B7		70	3	14	22	47
UMI-0180FU-B7		55	4	17	27	36
UMI-0220FU-B7		40.3	5	23	36	
UMI-0300FU-B7		32.7	6	28	44	
UMI-0370FU-B7		26.9	7	34	54	
UMI-0450FU-B7	Contact for	22.0	8	41	66	10.0
UMI-0550FU-B7	information	16.1	11	56	90	
UMI-0750FU-B7		13.4	14	68	108	
UMI-0900FU-B7		11.0	17	83	132	
UMI-1100FU-B7		9.2	20	99	158	6.9

Note:

Select braking resistors according to the resistance and power data provided by our company.

2. The braking resistor may increase the braking torque of the VFD. The preceding table describes the resistance and power for 100% braking torque, 10% braking usage, 50% braking usage, and 80% braking usage. You can select the braking system based on the actual operation conditions.

 When using an external braking unit, set the braking voltage class of the braking unit properly by referring to the manual of the dynamic braking unit. If the voltage class is set incorrectly, the VFD may not run properly.

Do not use braking resistors whose resistance is lower than the specified minimum resistance. VFDs do not provide protection against overcurrent caused by resistors with low resistance.

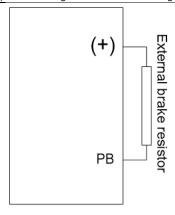
In scenarios where braking is frequently implemented, that is, the braking usage is greater than 10%, you need to select a braking resistor with higher power as required by the operation conditions according to the preceding table.

D.8.2 Braking resistor cable selection

Braking resistor cables need to be shielded cables.

D.8.3 Braking resistor installation

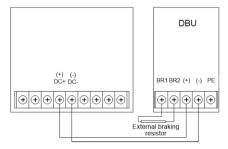
All resistors need to be installed in places with good cooling conditions.



The materials near the braking resistor or braking unit must be non-flammable. The surface temperature of the resistor is high. Air flowing from the resistor is of hundreds of degrees Celsius. Prevent any materials from coming into contact with the resistor.

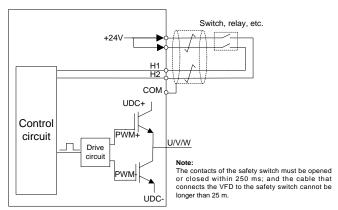
Installation of braking resistors

- The VFDs of 220V ≤15kW, 460V ≤30kW, and 575V ≤18.5kW only need external braking resistors.
 - PB and (+) are the wiring terminals of the braking resistors.



Installation of braking units

- The VFDs of 220V ≥18.5kW, 460V ≥37kW, and 575V ≥22kW need external braking units.
- ♦ (+), (-) are the wiring terminals of the braking units.
- The wiring length between the (+), (-) terminals of the VFD and the (+), (-) terminals of the braking units should be no more than 5m, and the distributing length among BR1 and BR2 and the braking resistor terminals should be no more than 10m.


The following figure shows the connection of one VFD to a dynamic braking unit.

Appendix E STO function description

Reference standards: IEC 61508-1, IEC 61508-2, IEC 61508-3, IEC 61508-4, IEC 62061, ISO 13849-1, and IEC 61800-5-2

You can enable the safe torque off (STO) function to prevent unexpected startups when the main power supply of the drive is not switched off. The STO function switches off the drive output by turning off the drive signals to prevent unexpected startups of the motor (see the following figure). After the STO function is enabled, you can perform some-time operations (such as non-electrical cleaning in the lathe industry) and maintain the non-electrical components of the device without switching off the drive.

E.1 STO function logic table

The following table describes the input states and corresponding faults of the STO function.

STO input state	Corresponding fault				
H1 and H2 opened	The STO function is triggered, and the drive stops running.				
'	Fault code:				
simultaneously	40: Safe torque off (STO)				
H1 and H2 closed	The STOP function is not triggered, and the drive runs				
simultaneously	properly.				
	The STL1, STL2, or STL3 fault occurs.				
One of H1 and H2 around and	Fault code:				
One of H1 and H2 opened, and the other closed	41: Channel H1 exception (STL1)				
	42: Channel H2 exception (STL2)				
	43: Channel H1 and H2 exceptions (STL3)				

E.2 STO channel delay description

The following table describes the trigger and indication delay of the STO channels.

STO mode	STO trigger delay ¹ and STO indication delay ²
STO fault: STL1	Trigger delay < 10 ms
	Indication delay < 280 ms Trigger delay < 10 ms
STO fault: STL2	Indication delay < 280 ms
STO fault: STI 3	Trigger delay < 10 ms
010 1441. 0120	Indication delay < 280 ms
STO fault: STO	Trigger delay < 10 ms
	Indication delay < 100 ms

- 1. STO trigger delay: Time interval between trigger the STO function and switching off the drive output
- 2. STO indication delay: Time interval between trigger the STO function and STO output state indication

E.3 STO function installation checklist

Before installing the STO, check the items described in the following table to ensure that the STO function can be properly used.

Item
Ensure that the drive can be run or stopped randomly during commissioning.
Stop the drive (if it is running), disconnect the input power supply, and isolate the drive
from the power cable through the switch.
Check the STO circuit connection according to the circuit diagram.
Check whether the shielding layer of the STO input cable is connected to the +24 V
reference ground COM.
Connect the power supply.
Test the STO function as follows after the motor stops running:
If the drive is running, send a stop command to it and wait until the shaft of the
motor stops rotating.
Activate the STO circuit and send a start command to the drive. Ensure that the
motor does not start.
Deactivate the STO circuit.
Restart the drive, and check whether the motor is running properly.
Test the STO function as follows when the motor is running:
Start the drive. Ensure that the motor is running properly.
Activate the STO circuit.
The drive reports an STO fault (for details, see section 7.5 VFD faults and
solutions). Ensure that the motor coasts to stop rotating.
Deactivate the STO circuit.
Restart the drive, and check whether the motor is running properly.

Appendix F Acronyms and abbreviations

This chapter describes the acronyms and abbreviations of the terms or words that may be used on the interfaces of the keypad.

Term/word	Acronym/ abbreviation	Term/word	Acronym/ abbreviation
Accumulated/	A	lata a cal	l-t-l
accumulation	Accum	Interval	Intvl
Address	Addr	Leakage	Lkge
Amplitude	Amp	Lower limit	LowLim
Bridge	Brdg	Low-frequency	LwFreq
Coefficicent	Coeff	Low-speed	LwSp
Combination	Comb	Master/slave	M/S
Command	Cmd	Operation/operate/operator	Oper
Communication	Comm	Output	Outp
Compensation	Comp	Parameter	Param
Component	Cmpt	Password	Pwd
Consumption	Consume	Position	Pos
Control	Ctrl	Power	Pwr
Current	Cur	Proportional	Prop
Detection/detect	Det	Protect/protection	Prot
Differential	Diff	Quantity	Qty
Digital	Digi	Reference	Ref
Display	Disp	Resistance	Resis
Dynamic	Dyn	Reverse	REV
Eelectromotive force	Emf	Saturation	Satur
Emergency	Emer	Short-circuit	S/C
Error	Err	Source	Src
Factor	Fac	Speed	Spd
Feedback	Fdbk	Spindle	Spdl
Filter/filtering	Filt	Switch	Swt
Forward	FWD	System	SYS
Frequency	Freq	Temperature	Temp
Frequency point	FreqPnt	Terminal	Trml
Friction	Frict	Threshold	Thr
High-speed	HiSp	Torque	Trq
Identification/identity	ID	Upper limit	UpLim
Inductance	Ind	Value	Val
Initial	Init	Version	Ver
Input	Inp	Vibration	Vib
Instance	Inst	Voltage	Volt
Integral	Intg	Voltage point	VoltPnt

Appendix G Energy efficiency data

Table G-1 Power loss and IE class

	Relative loss (%)									IE
Model	(0;25)	(0;50)	(0;100)	(50;25)	(50;50)	(50;100)	(90;50)	(90;100)	loss (W)	class
UMI-0007CU-B7	1.45	1.64	2.45	1.33	1.83	2.22	2.16	2.58	8	IE2
UMI-0015CU-B7	0.71	0.86	1.80	0.79	1.07	1.90	1.61	2.22	8	IE2
UMI-0022CU-B7	1.26	1.42	2.09	1.29	1.62	2.25	1.62	2.49	10	IE2
UMI-0040CU-B7	1.05	1.37	1.59	1.35	1.48	1.98	1.65	2.68	11	IE2
UMI-0055CU-B7	1.20	0.89	2.44	1.35	1.56	2.58	1.64	3.05	10	IE2
UMI-0075CU-B7	0.77	0.94	1.69	0.81	1.18	2.19	1.40	2.16	12	IE2
UMI-0110CU-B7	0.63	1.04	1.66	0.66	1.37	2.41	1.38	2.71	14	IE2
UMI-0150CU-B7	0.55	0.67	1.42	0.64	0.87	1.51	0.95	1.67	14	IE2
UMI-0180CU-B7	0.79	0.89	1.49	1.22	1.60	2.04	1.71	2.35	15	IE2
UMI-0220CU-B7	0.98	1.17	1.73	1.09	1.43	1.90	1.49	2.03	16	IE2
UMI-0300CU-B7	0.79	1.00	1.03	0.80	1.24	1.40	1.31	1.69	21	IE2
UMI-0370CU-B7	0.63	0.89	1.49	0.82	1.28	1.79	1.37	2.01	21	IE2
UMI-0450CU-B7	0.63	0.74	1.38	1.08	1.25	1.79	1.28	1.97	24	IE2
UMI-0550CU-B7	0.56	0.81	1.39	0.73	1.03	1.60	1.09	1.80	25	IE2
UMI-0015EU-B7	1.25	1.22	1.35	0.91	0.84	1.18	0.74	1.18	3	IE2
UMI-0022EU-B7	1.00	1.60	2.01	0.65	0.82	1.23	0.67	1.18	5	IE2
UMI-0040EU-B7	0.92	1.15	1.69	0.93	1.17	1.75	1.16	1.87	6	IE2
UMI-0055EU-B7	0.77	1.04	1.70	0.82	1.13	1.91	1.15	2.14	8	IE2
UMI-0075EU-B7	0.63	0.72	1.28	0.70	0.85	1.85	0.96	1.54	7	IE2
UMI-0110EU-B7	0.49	0.69	1.27	0.50	0.85	1.62	0.81	1.78	9	IE2
UMI-0150EU-B7	0.34	0.42	1.04	0.47	0.60	1.20	0.64	1.37	9	IE2
UMI-0180EU-B7	0.44	0.61	1.00	0.62	0.85	1.40	0.79	1.36	11	IE2
UMI-0220EU-B7	0.38	0.54	1.00	0.55	0.74	1.27	0.71	1.14	11	IE2
UMI-0300EU-B7	0.43	0.58	1.02	0.59	0.74	1.19	0.69	1.23	13	IE2
UMI-0370EU-B7	0.39	0.57	1.14	0.51	0.72	1.32	0.82	1.42	14	IE2
UMI-0450EU-B7	0.40	0.57	1.15	0.64	0.82	1.35	0.80	1.36	21	IE2
UMI-0550EU-B7	0.42	0.56	1.04	0.58	0.73	1.21	0.73	1.15	22	IE2
UMI-0750EU-B7	0.36	0.50	0.92	0.41	0.57	1.06	0.62	1.17	22	IE2
UMI-0900EU-B7	0.34	0.49	0.95	0.39	0.53	1.06	0.74	1.22	25	IE2
UMI-1100EU-B7	0.35	0.51	1.07	0.39	0.61	1.35	0.66	1.47	28	IE2
UMI-1320EU-B7	0.39	0.49	0.87	0.50	0.58	1.05	0.70	1.18	55	IE2
UMI-1600EU-B7	0.48	0.58	1.12	1.00	0.80	1.54	0.82	1.52	55	IE2
UMI-1850EU-B7	0.51	0.63	0.99	0.96	0.92	1.40	0.88	1.33	55	IE2
UMI-2000EU-B7	0.43	0.58	1.16	0.60	0.78	1.49	0.82	1.51	55	IE2

	Relative loss (%)								Standby	IE
Model	(0;25)	(0;50)	(0;100)	(50;25)	(50;50)	(50;100)	(90;50)	(90;100)	loss (W)	class
UMI-2200EU-B7	0.44	0.54	0.92	0.62	0.70	1.14	0.77	1.43	80	IE2
UMI-2500EU-B7	0.31	0.49	1.00	0.53	0.76	1.37	0.76	1.43	80	IE2
UMI-2800EU-B7	0.38	0.54	0.92	0.43	0.62	1.13	0.64	1.31	80	IE2
UMI-3150EU-B7	0.36	0.44	0.97	0.40	0.53	1.11	0.53	1.18	80	IE2
UMI-3500EU-B7	0.34	0.47	0.94	0.40	0.48	1.06	0.54	1.21	80	IE2
UMI-4000EU-B7	0.44	0.54	0.99	0.58	0.62	1.18	0.64	1.41	80	IE2
UMI-5000EU-B7	0.35	0.44	0.95	0.39	0.64	1.31	0.75	1.67	80	IE2
UMI-0007FU-B7	1.06	1.26	1.62	1.16	1.42	1.91	1.55	2.02	5	IE2
UMI-0015FU-B7	0.92	1.02	1.55	1.02	1.16	1.72	1.41	1.96	5	IE2
UMI-0022FU-B7	0.80	0.96	1.50	0.92	1.12	1.70	1.30	1.88	5	IE2
UMI-0040FU-B7	0.66	0.82	1.46	0.80	1.06	1.66	1.25	1.86	8	IE2
UMI-0055FU-B7	0.62	0.78	1.43	0.76	1.02	1.60	1.22	1.86	8	IE2
UMI-0075FU-B7	0.56	0.69	1.32	0.72	1.08	1.68	1.26	1.88	8	IE2
UMI-0110FU-B7	0.50	0.64	1.18	0.67	1.06	1.69	1.20	1.86	11	IE2
UMI-0150FU-B7	0.46	0.59	1.14	0.66	1.07	1.64	1.16	1.88	11	IE2
UMI-0180FU-B7	0.45	0.58	1.10	0.65	1.04	1.60	1.13	1.87	11	IE2
UMI-0220FU-B7	0.42	0.56	1.08	0.62	1.00	1.62	1.09	1.89	13	IE2
UMI-0300FU-B7	0.40	0.57	1.06	0.63	0.95	1.62	1.08	1.86	13	IE2
UMI-0370FU-B7	0.40	0.56	1.06	0.64	0.96	1.61	1.04	1.84	13	IE2
UMI-0450FU-B7	0.38	0.58	1.03	0.57	0.94	1.62	1.02	1.90	13	IE2
UMI-0550FU-B7	0.36	0.56	1.04	0.56	0.93	1.53	1.03	1.87	22	IE2
UMI-0750FU-B7	0.34	0.55	1.00	0.54	0.94	1.52	1.02	1.86	22	IE2
UMI-0900FU-B7	0.34	0.54	0.96	0.54	0.95	1.56	1.04	1.81	22	IE2
UMI-1100FU-B7	0.33	0.52	0.98	0.52	0.92	1.54	1.01	1.83	22	IE2

Table G-2 Rated specifications

Model	Apparent power (kVA)	Rated output power (kW)	Rated output current (A)	Max. working temperature (°C)	Rated power frequency (Hz)	Rated power voltage (V)
UMI-0007CU-B7	1.7	0.75	4.5			
UMI-0015CU-B7	2.7	1.5	7	50°C		
UMI-0022CU-B7	3.8	2.2	10	Derate by 1%	50Hz/60Hz,	
UMI-0040CU-B7	6.1	4.0	16	for every	Allowed	3PH
UMI-0055CU-B7	7.6	5.5	20	increase of	range:	200–240V
UMI-0075CU-B7	11.4	7.5	30	1°C when the	47–63Hz	
UMI-0110CU-B7	16	11	42	temperature exceeds 40°C.		
UMI-0150CU-B7	21	15	55	exceeds 40°C.		

Model	Apparent power (kVA)	Rated output power (kW)	Rated output current (A)	Max. working temperature (°C)	Rated power frequency (Hz)	Rated power voltage (V)
UMI-0180CU-B7	26.7	18.5	70			
UMI-0220CU-B7	30.5	22	80			
UMI-0300CU-B7	41.9	30	110			
UMI-0370CU-B7	50.3	37	130			
UMI-0450CU-B7	61	45	160			
UMI-0550CU-B7	76.2	55	200			
UMI-0015EU-B7	2.9	1.5	3.7			
UMI-0022EU-B7	3.9	2.2	5			
UMI-0040EU-B7	7.5	4.0	9.5			
UMI-0055EU-B7	11.1	5.5	14			
UMI-0075EU-B7	14.7	7.5	18.5			
UMI-0110EU-B7	19.9	11	25			
UMI-0150EU-B7	25.5	15	32			
UMI-0180EU-B7	30.2	18.5	38			
UMI-0220EU-B7	35.8	22	45			
UMI-0300EU-B7	47.8	30	60			
UMI-0370EU-B7	59.7	37	75			
UMI-0450EU-B7	73.3	45	92			
UMI-0550EU-B7	91.6	55	115			0011
UMI-0750EU-B7	119.5	75	150			3PH 380–480V
UMI-0900EU-B7	143.4	90	180			380-480V
UMI-1100EU-B7	171.3	110	215			
UMI-1320EU-B7	207.1	132	260			
UMI-1600EU-B7	243.0	160	305			
UMI-1850EU-B7	270.8	185	340			
UMI-2000EU-B7	302.7	200	380			
UMI-2200EU-B7	338.6	220	425			
UMI-2500EU-B7	382.4	250	480			
UMI-2800EU-B7	422.2	280	530			
UMI-3150EU-B7	478.8	315	600			
UMI-3500EU-B7	517.8	355	650			
UMI-4000EU-B7	573.6	400	720			
UMI-5000EU-B7	685.1	500	860			
UMI-0007FU-B7	1.6	0.75	2.1	50°C	50Hz/60Hz,	3PH
UMI-0015FU-B7	2.7	1.5	3.2	Derate by 1%	Allowed	520-600V
UMI-0022FU-B7	3.6	2.2	4.5	for every	range:	

Model	Apparent power (kVA)	Rated output power (kW)	Rated output current (A)	Max. working temperature (°C)	Rated power frequency (Hz)	Rated power voltage (V)
UMI-0040FU-B7	6.2	4	6.5	increase of	47–63Hz	
UMI-0055FU-B7	7.5	5.5	9	1°C when the		
UMI-0075FU-B7	11.1	7.5	12	temperature		
UMI-0110FU-B7	16.2	11	16	exceeds 40°C.		
UMI-0150FU-B7	21	15	21			
UMI-0180FU-B7	25	18.5	27			
UMI-0220FU-B7	29.2	22	35			
UMI-0300FU-B7	39.6	30	45			
UMI-0370FU-B7	49.4	37	52			
UMI-0450FU-B7	60.6	45	62			
UMI-0550FU-B7	75.2	55	86			
UMI-0750FU-B7	98.6	75	98			
UMI-0900FU-B7	118.2	90	120			
UMI-1100FU-B7	141.1	110	150			